@@ -1815,14 +1815,28 @@ def _set_name(
1815
1815
Parrot 30.0
1816
1816
Parrot 20.0
1817
1817
Name: Max Speed, dtype: float64
1818
+
1819
+ We can pass a list of values (Here: ["a", "b", "a", "b"]) to group the Series data by custom labels:
1818
1820
>>> ser.groupby(["a", "b", "a", "b"]).mean()
1819
1821
a 210.0
1820
1822
b 185.0
1821
1823
Name: Max Speed, dtype: float64
1824
+
1825
+ Grouping by numeric labels yields similar results: (Here: [0, 1, 0, 1]):
1826
+ >>> ser.groupby([0, 1, 0, 1]).mean()
1827
+ 0 210.0
1828
+ 1 185.0
1829
+ Name: Max Speed, dtype: float64
1830
+
1831
+
1832
+ We can group by a level of the index:
1822
1833
>>> ser.groupby(level=0).mean()
1823
1834
Falcon 370.0
1824
1835
Parrot 25.0
1825
1836
Name: Max Speed, dtype: float64
1837
+
1838
+
1839
+ We can group by a condition applied to the Series values:
1826
1840
>>> ser.groupby(ser > 100).mean()
1827
1841
Max Speed
1828
1842
False 25.0
@@ -1845,11 +1859,15 @@ def _set_name(
1845
1859
Parrot Captive 30.0
1846
1860
Wild 20.0
1847
1861
Name: Max Speed, dtype: float64
1862
+
1848
1863
>>> ser.groupby(level=0).mean()
1849
1864
Animal
1850
1865
Falcon 370.0
1851
1866
Parrot 25.0
1852
1867
Name: Max Speed, dtype: float64
1868
+
1869
+ We can also group by the 'Type' level of the hierarchical index to get the mean speed for each type:
1870
+
1853
1871
>>> ser.groupby(level="Type").mean()
1854
1872
Type
1855
1873
Captive 210.0
@@ -1865,12 +1883,14 @@ def _set_name(
1865
1883
b 3
1866
1884
dtype: int64
1867
1885
1886
+ To include `NA` values in the group keys, set `dropna=False`:
1868
1887
>>> ser.groupby(level=0, dropna=False).sum()
1869
1888
a 3
1870
1889
b 3
1871
1890
NaN 3
1872
1891
dtype: int64
1873
1892
1893
+ We can also group by a custom list (Here: ["a", "b", "a", np.nan]) with NaN values to handle missing group labels:
1874
1894
>>> arrays = ['Falcon', 'Falcon', 'Parrot', 'Parrot']
1875
1895
>>> ser = pd.Series([390., 350., 30., 20.], index=arrays, name="Max Speed")
1876
1896
>>> ser.groupby(["a", "b", "a", np.nan]).mean()
0 commit comments