|
| 1 | +import pandas as pd |
| 2 | +from datetime import datetime |
| 3 | + |
| 4 | +class JanitorialScorecard: |
| 5 | + def __init__(self): |
| 6 | + # Define weights for different components |
| 7 | + self.weights = { |
| 8 | + 'compliance': 0.40, # Critical for healthcare settings |
| 9 | + 'quality': 0.35, # Direct inspection results |
| 10 | + 'customer': 0.25 # Customer satisfaction and relationship |
| 11 | + } |
| 12 | + |
| 13 | + # Score mappings |
| 14 | + self.letter_scores = { |
| 15 | + 'G': 100, # Great |
| 16 | + 'A': 80, # Average |
| 17 | + 'P': 0 # Poor |
| 18 | + } |
| 19 | + |
| 20 | + # Define critical areas for healthcare facilities |
| 21 | + self.critical_areas = [ |
| 22 | + 'Clean and Disinfect (All touchpoints)', |
| 23 | + 'Clean and disinfect toilets and urinals', |
| 24 | + 'Restock supplies and consumables', |
| 25 | + 'Wet mop floors using disinfectant and clean water', |
| 26 | + 'SDS sheets current', |
| 27 | + 'Proper PPE', |
| 28 | + 'Commercial grade chemicals' |
| 29 | + ] |
| 30 | + |
| 31 | + def calculate_compliance_score(self, inspection_data): |
| 32 | + """Calculate compliance score based on critical healthcare requirements""" |
| 33 | + critical_items = sum(1 for item in inspection_data.get('compliance_items', []) |
| 34 | + if item['compliant'] is True) |
| 35 | + total_critical_items = len(inspection_data.get('compliance_items', [])) |
| 36 | + |
| 37 | + return (critical_items / total_critical_items) * 100 if total_critical_items > 0 else 0 |
| 38 | + |
| 39 | + def calculate_quality_score(self, inspection_results): |
| 40 | + """Calculate quality score based on inspection results""" |
| 41 | + scores = [] |
| 42 | + for area, grade in inspection_results.items(): |
| 43 | + score = self.letter_scores.get(grade, 0) |
| 44 | + # Weight critical areas more heavily |
| 45 | + weight = 1.5 if area in self.critical_areas else 1.0 |
| 46 | + scores.append(score * weight) |
| 47 | + |
| 48 | + return sum(scores) / len(scores) if scores else 0 |
| 49 | + |
| 50 | + def calculate_customer_score(self, customer_feedback): |
| 51 | + """Calculate customer satisfaction and relationship score""" |
| 52 | + metrics = { |
| 53 | + 'communication': customer_feedback.get('communication', 0), |
| 54 | + 'responsiveness': customer_feedback.get('responsiveness', 0), |
| 55 | + 'consistency': customer_feedback.get('consistency', 0), |
| 56 | + 'relationship': customer_feedback.get('relationship', 0) |
| 57 | + } |
| 58 | + |
| 59 | + return sum(metrics.values()) / len(metrics) |
| 60 | + |
| 61 | + def calculate_total_score(self, inspection_data, inspection_results, customer_feedback): |
| 62 | + """Calculate final weighted score""" |
| 63 | + compliance_score = self.calculate_compliance_score(inspection_data) |
| 64 | + quality_score = self.calculate_quality_score(inspection_results) |
| 65 | + customer_score = self.calculate_customer_score(customer_feedback) |
| 66 | + |
| 67 | + weighted_score = ( |
| 68 | + compliance_score * self.weights['compliance'] + |
| 69 | + quality_score * self.weights['quality'] + |
| 70 | + customer_score * self.weights['customer'] |
| 71 | + ) |
| 72 | + |
| 73 | + return { |
| 74 | + 'total_score': round(weighted_score, 2), |
| 75 | + 'compliance_score': round(compliance_score, 2), |
| 76 | + 'quality_score': round(quality_score, 2), |
| 77 | + 'customer_score': round(customer_score, 2), |
| 78 | + 'date': datetime.now().strftime('%Y-%m-%d'), |
| 79 | + 'status': self.get_status(weighted_score) |
| 80 | + } |
| 81 | + |
| 82 | + def get_status(self, score): |
| 83 | + """Determine status based on total score""" |
| 84 | + if score >= 90: |
| 85 | + return 'Excellent - Exceeds Standards' |
| 86 | + elif score >= 80: |
| 87 | + return 'Good - Meets Standards' |
| 88 | + elif score >= 70: |
| 89 | + return 'Fair - Needs Improvement' |
| 90 | + else: |
| 91 | + return 'Poor - Immediate Action Required' |
| 92 | + |
| 93 | + def generate_report(self, scores): |
| 94 | + """Generate a formatted report of the scores""" |
| 95 | + report = f""" |
| 96 | +Healthcare Facility Janitorial Scorecard |
| 97 | +Date: {scores['date']} |
| 98 | + |
| 99 | +Overall Status: {scores['status']} |
| 100 | +Total Score: {scores['total_score']}% |
| 101 | + |
| 102 | +Component Breakdown: |
| 103 | +1. Compliance Score: {scores['compliance_score']}% |
| 104 | + - Weight: {self.weights['compliance'] * 100}% |
| 105 | + - Focus: CMS/Dialysis requirements and safety standards |
| 106 | + |
| 107 | +2. Quality Score: {scores['quality_score']}% |
| 108 | + - Weight: {self.weights['quality'] * 100}% |
| 109 | + - Based on direct inspection results |
| 110 | + |
| 111 | +3. Customer Satisfaction: {scores['customer_score']}% |
| 112 | + - Weight: {self.weights['customer'] * 100}% |
| 113 | + - Measures relationship health and satisfaction |
| 114 | + |
| 115 | +Action Items: |
| 116 | +{'- Immediate corrective action required' if scores['total_score'] < 70 else ''} |
| 117 | +{'- Schedule follow-up inspection' if 70 <= scores['total_score'] < 80 else ''} |
| 118 | +{'- Maintain current standards' if scores['total_score'] >= 80 else ''} |
| 119 | +""" |
| 120 | + return report |
| 121 | + |
| 122 | +# Example usage |
| 123 | +if __name__ == "__main__": |
| 124 | + scorecard = JanitorialScorecard() |
| 125 | + |
| 126 | + # Sample data |
| 127 | + inspection_data = { |
| 128 | + 'compliance_items': [ |
| 129 | + {'item': 'SDS sheets current', 'compliant': True}, |
| 130 | + {'item': 'Proper PPE', 'compliant': True}, |
| 131 | + {'item': 'Commercial grade chemicals', 'compliant': True} |
| 132 | + ] |
| 133 | + } |
| 134 | + |
| 135 | + inspection_results = { |
| 136 | + 'Clean and Disinfect (All touchpoints)': 'G', |
| 137 | + 'Clean and disinfect toilets and urinals': 'G', |
| 138 | + 'Restock supplies and consumables': 'A', |
| 139 | + 'Wet mop floors using disinfectant and clean water': 'G' |
| 140 | + } |
| 141 | + |
| 142 | + customer_feedback = { |
| 143 | + 'communication': 90, |
| 144 | + 'responsiveness': 85, |
| 145 | + 'consistency': 88, |
| 146 | + 'relationship': 92 |
| 147 | + } |
| 148 | + |
| 149 | + scores = scorecard.calculate_total_score( |
| 150 | + inspection_data, |
| 151 | + inspection_results, |
| 152 | + customer_feedback |
| 153 | + ) |
| 154 | + |
| 155 | + print(scorecard.generate_report(scores)) |
0 commit comments