Skip to content

Commit 45ee3f9

Browse files
committed
TST (string dtype): fix sql xfails with using_infer_string
1 parent 9b16b9e commit 45ee3f9

File tree

4 files changed

+34
-15
lines changed

4 files changed

+34
-15
lines changed

pandas/core/dtypes/cast.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1162,6 +1162,7 @@ def convert_dtypes(
11621162

11631163
def maybe_infer_to_datetimelike(
11641164
value: npt.NDArray[np.object_],
1165+
convert_to_nullable_dtype: bool = False,
11651166
) -> np.ndarray | DatetimeArray | TimedeltaArray | PeriodArray | IntervalArray:
11661167
"""
11671168
we might have a array (or single object) that is datetime like,
@@ -1199,6 +1200,7 @@ def maybe_infer_to_datetimelike(
11991200
# numpy would have done it for us.
12001201
convert_numeric=False,
12011202
convert_non_numeric=True,
1203+
convert_to_nullable_dtype=convert_to_nullable_dtype,
12021204
dtype_if_all_nat=np.dtype("M8[s]"),
12031205
)
12041206

pandas/core/internals/construction.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -966,8 +966,9 @@ def convert(arr):
966966
if dtype is None:
967967
if arr.dtype == np.dtype("O"):
968968
# i.e. maybe_convert_objects didn't convert
969-
arr = maybe_infer_to_datetimelike(arr)
970-
if dtype_backend != "numpy" and arr.dtype == np.dtype("O"):
969+
convert_to_nullable_dtype = dtype_backend != "numpy"
970+
arr = maybe_infer_to_datetimelike(arr, convert_to_nullable_dtype)
971+
if convert_to_nullable_dtype and arr.dtype == np.dtype("O"):
971972
new_dtype = StringDtype()
972973
arr_cls = new_dtype.construct_array_type()
973974
arr = arr_cls._from_sequence(arr, dtype=new_dtype)

pandas/io/sql.py

Lines changed: 19 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -45,6 +45,8 @@
4545
from pandas.core.dtypes.common import (
4646
is_dict_like,
4747
is_list_like,
48+
is_object_dtype,
49+
is_string_dtype,
4850
)
4951
from pandas.core.dtypes.dtypes import (
5052
ArrowDtype,
@@ -58,6 +60,7 @@
5860
Series,
5961
)
6062
from pandas.core.arrays import ArrowExtensionArray
63+
from pandas.core.arrays.string_ import StringDtype
6164
from pandas.core.base import PandasObject
6265
import pandas.core.common as com
6366
from pandas.core.common import maybe_make_list
@@ -1316,7 +1319,12 @@ def _harmonize_columns(
13161319
elif dtype_backend == "numpy" and col_type is float:
13171320
# floats support NA, can always convert!
13181321
self.frame[col_name] = df_col.astype(col_type)
1319-
1322+
elif (
1323+
using_string_dtype()
1324+
and is_string_dtype(col_type)
1325+
and is_object_dtype(self.frame[col_name])
1326+
):
1327+
self.frame[col_name] = df_col.astype(col_type)
13201328
elif dtype_backend == "numpy" and len(df_col) == df_col.count():
13211329
# No NA values, can convert ints and bools
13221330
if col_type is np.dtype("int64") or col_type is bool:
@@ -1403,6 +1411,7 @@ def _get_dtype(self, sqltype):
14031411
DateTime,
14041412
Float,
14051413
Integer,
1414+
String,
14061415
)
14071416

14081417
if isinstance(sqltype, Float):
@@ -1422,6 +1431,10 @@ def _get_dtype(self, sqltype):
14221431
return date
14231432
elif isinstance(sqltype, Boolean):
14241433
return bool
1434+
elif isinstance(sqltype, String):
1435+
if using_string_dtype():
1436+
return StringDtype(na_value=np.nan)
1437+
14251438
return object
14261439

14271440

@@ -2205,7 +2218,7 @@ def read_table(
22052218
elif using_string_dtype():
22062219
from pandas.io._util import arrow_string_types_mapper
22072220

2208-
arrow_string_types_mapper()
2221+
mapping = arrow_string_types_mapper()
22092222
else:
22102223
mapping = None
22112224

@@ -2286,6 +2299,10 @@ def read_query(
22862299
from pandas.io._util import _arrow_dtype_mapping
22872300

22882301
mapping = _arrow_dtype_mapping().get
2302+
elif using_string_dtype():
2303+
from pandas.io._util import arrow_string_types_mapper
2304+
2305+
mapping = arrow_string_types_mapper()
22892306
else:
22902307
mapping = None
22912308

pandas/tests/io/test_sql.py

Lines changed: 10 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -18,8 +18,6 @@
1818
import numpy as np
1919
import pytest
2020

21-
from pandas._config import using_string_dtype
22-
2321
from pandas._libs import lib
2422
from pandas.compat import pa_version_under14p1
2523
from pandas.compat._optional import import_optional_dependency
@@ -60,7 +58,6 @@
6058
pytest.mark.filterwarnings(
6159
"ignore:Passing a BlockManager to DataFrame:DeprecationWarning"
6260
),
63-
pytest.mark.xfail(using_string_dtype(), reason="TODO(infer_string)", strict=False),
6461
]
6562

6663

@@ -682,6 +679,7 @@ def postgresql_psycopg2_conn(postgresql_psycopg2_engine):
682679

683680
@pytest.fixture
684681
def postgresql_adbc_conn():
682+
pytest.importorskip("pyarrow")
685683
pytest.importorskip("adbc_driver_postgresql")
686684
from adbc_driver_postgresql import dbapi
687685

@@ -814,6 +812,7 @@ def sqlite_conn_types(sqlite_engine_types):
814812

815813
@pytest.fixture
816814
def sqlite_adbc_conn():
815+
pytest.importorskip("pyarrow")
817816
pytest.importorskip("adbc_driver_sqlite")
818817
from adbc_driver_sqlite import dbapi
819818

@@ -986,8 +985,7 @@ def test_dataframe_to_sql_empty(conn, test_frame1, request):
986985
if conn == "postgresql_adbc_conn":
987986
request.node.add_marker(
988987
pytest.mark.xfail(
989-
reason="postgres ADBC driver cannot insert index with null type",
990-
strict=True,
988+
reason="postgres ADBC driver < 1.2 cannot insert index with null type",
991989
)
992990
)
993991
# GH 51086 if conn is sqlite_engine
@@ -3554,7 +3552,8 @@ def test_read_sql_dtype_backend(
35543552
result = getattr(pd, func)(
35553553
f"Select * from {table}", conn, dtype_backend=dtype_backend
35563554
)
3557-
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
3555+
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
3556+
35583557
tm.assert_frame_equal(result, expected)
35593558

35603559
if "adbc" in conn_name:
@@ -3604,7 +3603,7 @@ def test_read_sql_dtype_backend_table(
36043603

36053604
with pd.option_context("mode.string_storage", string_storage):
36063605
result = getattr(pd, func)(table, conn, dtype_backend=dtype_backend)
3607-
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
3606+
expected = dtype_backend_expected(string_storage, dtype_backend, conn_name)
36083607
tm.assert_frame_equal(result, expected)
36093608

36103609
if "adbc" in conn_name:
@@ -4120,7 +4119,7 @@ def tquery(query, con=None):
41204119
def test_xsqlite_basic(sqlite_buildin):
41214120
frame = DataFrame(
41224121
np.random.default_rng(2).standard_normal((10, 4)),
4123-
columns=Index(list("ABCD"), dtype=object),
4122+
columns=Index(list("ABCD")),
41244123
index=date_range("2000-01-01", periods=10, freq="B"),
41254124
)
41264125
assert sql.to_sql(frame, name="test_table", con=sqlite_buildin, index=False) == 10
@@ -4147,7 +4146,7 @@ def test_xsqlite_basic(sqlite_buildin):
41474146
def test_xsqlite_write_row_by_row(sqlite_buildin):
41484147
frame = DataFrame(
41494148
np.random.default_rng(2).standard_normal((10, 4)),
4150-
columns=Index(list("ABCD"), dtype=object),
4149+
columns=Index(list("ABCD")),
41514150
index=date_range("2000-01-01", periods=10, freq="B"),
41524151
)
41534152
frame.iloc[0, 0] = np.nan
@@ -4170,7 +4169,7 @@ def test_xsqlite_write_row_by_row(sqlite_buildin):
41704169
def test_xsqlite_execute(sqlite_buildin):
41714170
frame = DataFrame(
41724171
np.random.default_rng(2).standard_normal((10, 4)),
4173-
columns=Index(list("ABCD"), dtype=object),
4172+
columns=Index(list("ABCD")),
41744173
index=date_range("2000-01-01", periods=10, freq="B"),
41754174
)
41764175
create_sql = sql.get_schema(frame, "test")
@@ -4191,7 +4190,7 @@ def test_xsqlite_execute(sqlite_buildin):
41914190
def test_xsqlite_schema(sqlite_buildin):
41924191
frame = DataFrame(
41934192
np.random.default_rng(2).standard_normal((10, 4)),
4194-
columns=Index(list("ABCD"), dtype=object),
4193+
columns=Index(list("ABCD")),
41954194
index=date_range("2000-01-01", periods=10, freq="B"),
41964195
)
41974196
create_sql = sql.get_schema(frame, "test")

0 commit comments

Comments
 (0)