@@ -248,6 +248,7 @@ def _return_result_expected(
248248 self ,
249249 df ,
250250 chunksize ,
251+ temp_file ,
251252 r_dtype = None ,
252253 c_dtype = None ,
253254 rnlvl = None ,
@@ -260,15 +261,16 @@ def _return_result_expected(
260261 kwargs ["index_col" ] = list (range (rnlvl ))
261262 kwargs ["header" ] = list (range (cnlvl ))
262263
263- with tm .ensure_clean ("__tmp_to_csv_moar__" ) as path :
264- df .to_csv (path , encoding = "utf8" , chunksize = chunksize )
265- recons = self .read_csv (path , ** kwargs )
264+
265+ path = str (temp_file )
266+ df .to_csv (path , encoding = "utf8" , chunksize = chunksize )
267+ recons = self .read_csv (path , ** kwargs )
266268 else :
267269 kwargs ["header" ] = 0
268270
269- with tm . ensure_clean ( "__tmp_to_csv_moar__" ) as path :
270- df .to_csv (path , encoding = "utf8" , chunksize = chunksize )
271- recons = self .read_csv (path , ** kwargs )
271+ path = str ( temp_file )
272+ df .to_csv (path , encoding = "utf8" , chunksize = chunksize )
273+ recons = self .read_csv (path , ** kwargs )
272274
273275 def _to_uni (x ):
274276 if not isinstance (x , str ):
@@ -353,13 +355,13 @@ def _to_uni(x):
353355 @pytest .mark .parametrize (
354356 "nrows" , [2 , 10 , 99 , 100 , 101 , 102 , 198 , 199 , 200 , 201 , 202 , 249 , 250 , 251 ]
355357 )
356- def test_to_csv_nrows (self , nrows ):
358+ def test_to_csv_nrows (self , nrows , temp_file ):
357359 df = DataFrame (
358360 np .ones ((nrows , 4 )),
359361 index = date_range ("2020-01-01" , periods = nrows ),
360362 columns = Index (list ("abcd" ), dtype = object ),
361363 )
362- result , expected = self ._return_result_expected (df , 1000 , "dt" , "s" )
364+ result , expected = self ._return_result_expected (df , 1000 , temp_file , "dt" , "s" )
363365 expected .index = expected .index .astype ("M8[ns]" )
364366 tm .assert_frame_equal (result , expected , check_names = False )
365367
@@ -372,7 +374,7 @@ def test_to_csv_nrows(self, nrows):
372374 )
373375 @pytest .mark .parametrize ("ncols" , [1 , 2 , 3 , 4 ])
374376 @pytest .mark .filterwarnings (r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning" )
375- def test_to_csv_idx_types (self , nrows , r_idx_type , c_idx_type , ncols ):
377+ def test_to_csv_idx_types (self , nrows , r_idx_type , c_idx_type , ncols , temp_file ):
376378 axes = {
377379 "i" : lambda n : Index (np .arange (n ), dtype = np .int64 ),
378380 "s" : lambda n : Index ([f"{ i } _{ chr (i )} " for i in range (97 , 97 + n )]),
@@ -387,6 +389,7 @@ def test_to_csv_idx_types(self, nrows, r_idx_type, c_idx_type, ncols):
387389 result , expected = self ._return_result_expected (
388390 df ,
389391 1000 ,
392+ temp_file ,
390393 r_idx_type ,
391394 c_idx_type ,
392395 )
@@ -401,13 +404,13 @@ def test_to_csv_idx_types(self, nrows, r_idx_type, c_idx_type, ncols):
401404 "nrows" , [10 , 98 , 99 , 100 , 101 , 102 , 198 , 199 , 200 , 201 , 202 , 249 , 250 , 251 ]
402405 )
403406 @pytest .mark .parametrize ("ncols" , [1 , 2 , 3 , 4 ])
404- def test_to_csv_idx_ncols (self , nrows , ncols ):
407+ def test_to_csv_idx_ncols (self , nrows , ncols , temp_file ):
405408 df = DataFrame (
406409 np .ones ((nrows , ncols )),
407410 index = Index ([f"i-{ i } " for i in range (nrows )], name = "a" ),
408411 columns = Index ([f"i-{ i } " for i in range (ncols )], name = "a" ),
409412 )
410- result , expected = self ._return_result_expected (df , 1000 )
413+ result , expected = self ._return_result_expected (df , 1000 , temp_file )
411414 tm .assert_frame_equal (result , expected , check_names = False )
412415
413416 @pytest .mark .slow
@@ -427,25 +430,25 @@ def test_to_csv_dup_cols(self, nrows):
427430 ix [- 2 :] = ["rdupe" , "rdupe" ]
428431 df .index = ix
429432 df .columns = cols
430- result , expected = self ._return_result_expected (df , 1000 , dupe_col = True )
433+ result , expected = self ._return_result_expected (df , 1000 , temp_file , dupe_col = True )
431434 tm .assert_frame_equal (result , expected , check_names = False )
432435
433436 @pytest .mark .slow
434- def test_to_csv_empty (self ):
437+ def test_to_csv_empty (self , temp_file ):
435438 df = DataFrame (index = np .arange (10 , dtype = np .int64 ))
436- result , expected = self ._return_result_expected (df , 1000 )
439+ result , expected = self ._return_result_expected (df , 1000 , temp_file )
437440 tm .assert_frame_equal (result , expected , check_column_type = False )
438441
439442 @pytest .mark .slow
440- def test_to_csv_chunksize (self ):
443+ def test_to_csv_chunksize (self , temp_file ):
441444 chunksize = 1000
442445 rows = chunksize // 2 + 1
443446 df = DataFrame (
444447 np .ones ((rows , 2 )),
445448 columns = Index (list ("ab" )),
446449 index = MultiIndex .from_arrays ([range (rows ) for _ in range (2 )]),
447450 )
448- result , expected = self ._return_result_expected (df , chunksize , rnlvl = 2 )
451+ result , expected = self ._return_result_expected (df , chunksize , temp_file , rnlvl = 2 )
449452 tm .assert_frame_equal (result , expected , check_names = False )
450453
451454 @pytest .mark .slow
@@ -461,7 +464,7 @@ def test_to_csv_chunksize(self):
461464 [{"r_idx_nlevels" : 2 , "c_idx_nlevels" : 2 }, {"rnlvl" : 2 , "cnlvl" : 2 }],
462465 ],
463466 )
464- def test_to_csv_params (self , nrows , df_params , func_params , ncols ):
467+ def test_to_csv_params (self , nrows , df_params , func_params , ncols , temp_file ):
465468 if df_params .get ("r_idx_nlevels" ):
466469 index = MultiIndex .from_arrays (
467470 [f"i-{ i } " for i in range (nrows )]
@@ -478,7 +481,7 @@ def test_to_csv_params(self, nrows, df_params, func_params, ncols):
478481 else :
479482 columns = Index ([f"i-{ i } " for i in range (ncols )])
480483 df = DataFrame (np .ones ((nrows , ncols )), index = index , columns = columns )
481- result , expected = self ._return_result_expected (df , 1000 , ** func_params )
484+ result , expected = self ._return_result_expected (df , 1000 , temp_file , ** func_params )
482485 tm .assert_frame_equal (result , expected , check_names = False )
483486
484487 def test_to_csv_from_csv_w_some_infs (self , temp_file , float_frame ):
0 commit comments