@@ -9981,7 +9981,7 @@ def align(
99819981 * inner: use intersection of keys from both frames,
99829982 preserve the order of the left keys.
99839983
9984- axis : {0 or 'index', 1 or 'columns'} for Series,
9984+ axis : {0 or 'index', 1 or 'columns'} for Series,
99859985 {0 or 'index', 1 or 'columns'} for DataFrame, default None
99869986 Align on index (0), columns (1), or both (None).
99879987 level : int or level name, default None
@@ -12698,8 +12698,9 @@ def ewm(
1269812698 [:math:`x_0, x_1, ..., x_t`] would be:
1269912699
1270012700 .. math::
12701- y_t = \frac{x_t + (1 - \alpha)x_{t-1} + (1 - \alpha)^2 x_{t-2} + ... +
12702- (1 - \alpha)^t x_0}{1 + (1 - \alpha) + (1 - \alpha)^2 + ... + (1 - \alpha)^t}
12701+ y_t = \\frac{x_t + (1 - \\alpha)x_{t-1} + (1 - \\alpha)^2 x_{t-2} + ... +
12702+ (1 - \\alpha)^t x_0}{1 + (1 - \\alpha) + (1 - \\alpha)^2 + ... +
12703+ (1 - \\alpha)^t}
1270312704
1270412705 - When ``adjust=False``, the exponentially weighted function is calculated
1270512706 recursively:
@@ -12714,23 +12715,24 @@ def ewm(
1271412715
1271512716 - When ``ignore_na=False`` (default), weights are based on absolute
1271612717 positions.
12717- For example, the weights of :math:`x_0` and :math:`x_2` used in calculating
12718- the final weighted average of [:math:`x_0`, None, :math:`x_2`] are
12719- :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
12718+ For example, the weights of :math:`x_0` and :math:`x_2` used in
12719+ calculating the final weighted average of [:math:`x_0`, None, :math:`x_2`]
12720+ are :math:`(1-\alpha)^2` and :math:`1` if ``adjust=True``, and
1272012721 :math:`(1-\alpha)^2` and :math:`\alpha` if ``adjust=False``.
1272112722
1272212723 - When ``ignore_na=True``, weights are based
12723- on relative positions. For example, the weights of :math:`x_0` and :math:`x_2`
12724- used in calculating the final weighted average of
12724+ on relative positions. For example, the weights of :math:`x_0` and
12725+ :math:`x_2` used in calculating the final weighted average of
1272512726 [:math:`x_0`, None, :math:`x_2`] are :math:`1-\alpha` and :math:`1` if
12726- ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if ``adjust=False``.
12727+ ``adjust=True``, and :math:`1-\alpha` and :math:`\alpha` if
12728+ ``adjust=False``.
1272712729
1272812730 times : np.ndarray, Series, default None
1272912731
1273012732 Only applicable to ``mean()``.
1273112733
12732- Times corresponding to the observations. Must be monotonically increasing and
12733- ``datetime64[ns]`` dtype.
12734+ Times corresponding to the observations. Must be monotonically increasing
12735+ and ``datetime64[ns]`` dtype.
1273412736
1273512737 If 1-D array like, a sequence with the same shape as the observations.
1273612738
@@ -12748,8 +12750,8 @@ def ewm(
1274812750 Returns
1274912751 -------
1275012752 pandas.api.typing.ExponentialMovingWindow
12751- An instance of ExponentialMovingWindow for further exponentially weighted (EW)
12752- calculations, e.g. using the ``mean`` method.
12753+ An instance of ExponentialMovingWindow for further exponentially weighted
12754+ (EW) calculations, e.g. using the ``mean`` method.
1275312755
1275412756 See Also
1275512757 --------
@@ -12823,10 +12825,11 @@ def ewm(
1282312825
1282412826 **times**
1282512827
12826- Exponentially weighted mean with weights calculated with a timedelta ``halflife``
12827- relative to ``times``.
12828+ Exponentially weighted mean with weights calculated with a timedelta
12829+ ``halflife`` relative to ``times``.
1282812830
12829- >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15', '2020-01-17']
12831+ >>> times = ['2020-01-01', '2020-01-03', '2020-01-10', '2020-01-15',
12832+ ... '2020-01-17']
1283012833 >>> df.ewm(halflife='4 days', times=pd.DatetimeIndex(times)).mean()
1283112834 B
1283212835 0 0.000000
0 commit comments