@@ -70,39 +70,10 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
70
70
--format=actions \
71
71
-i ES01 ` # For now it is ok if docstrings are missing the extended summary` \
72
72
-i " pandas.Series.dt PR01" ` # Accessors are implemented as classes, but we do not document the Parameters section` \
73
- -i " pandas.MultiIndex.reorder_levels RT03,SA01" \
74
- -i " pandas.MultiIndex.to_frame RT03" \
75
73
-i " pandas.NA SA01" \
76
- -i " pandas.NaT SA01" \
77
74
-i " pandas.Period.freq GL08" \
78
- -i " pandas.Period.freqstr SA01" \
79
75
-i " pandas.Period.ordinal GL08" \
80
- -i " pandas.Period.strftime PR01,SA01" \
81
- -i " pandas.Period.to_timestamp SA01" \
82
- -i " pandas.PeriodDtype SA01" \
83
76
-i " pandas.PeriodDtype.freq SA01" \
84
- -i " pandas.PeriodIndex.day SA01" \
85
- -i " pandas.PeriodIndex.day_of_week SA01" \
86
- -i " pandas.PeriodIndex.day_of_year SA01" \
87
- -i " pandas.PeriodIndex.dayofweek SA01" \
88
- -i " pandas.PeriodIndex.dayofyear SA01" \
89
- -i " pandas.PeriodIndex.days_in_month SA01" \
90
- -i " pandas.PeriodIndex.daysinmonth SA01" \
91
- -i " pandas.PeriodIndex.from_fields PR07,SA01" \
92
- -i " pandas.PeriodIndex.from_ordinals SA01" \
93
- -i " pandas.PeriodIndex.hour SA01" \
94
- -i " pandas.PeriodIndex.is_leap_year SA01" \
95
- -i " pandas.PeriodIndex.minute SA01" \
96
- -i " pandas.PeriodIndex.month SA01" \
97
- -i " pandas.PeriodIndex.quarter SA01" \
98
- -i " pandas.PeriodIndex.qyear GL08" \
99
- -i " pandas.PeriodIndex.second SA01" \
100
- -i " pandas.PeriodIndex.to_timestamp RT03,SA01" \
101
- -i " pandas.PeriodIndex.week SA01" \
102
- -i " pandas.PeriodIndex.weekday SA01" \
103
- -i " pandas.PeriodIndex.weekofyear SA01" \
104
- -i " pandas.PeriodIndex.year SA01" \
105
- -i " pandas.RangeIndex PR07" \
106
77
-i " pandas.RangeIndex.from_range PR01,SA01" \
107
78
-i " pandas.RangeIndex.start SA01" \
108
79
-i " pandas.RangeIndex.step SA01" \
@@ -120,11 +91,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
120
91
-i " pandas.Series.dt.day_name PR01,PR02" \
121
92
-i " pandas.Series.dt.floor PR01,PR02" \
122
93
-i " pandas.Series.dt.freq GL08" \
123
- -i " pandas.Series.dt.microseconds SA01" \
124
94
-i " pandas.Series.dt.month_name PR01,PR02" \
125
95
-i " pandas.Series.dt.nanoseconds SA01" \
126
96
-i " pandas.Series.dt.normalize PR01" \
127
- -i " pandas.Series.dt.qyear GL08" \
128
97
-i " pandas.Series.dt.round PR01,PR02" \
129
98
-i " pandas.Series.dt.seconds SA01" \
130
99
-i " pandas.Series.dt.strftime PR01,PR02" \
@@ -133,106 +102,27 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
133
102
-i " pandas.Series.dt.tz_convert PR01,PR02" \
134
103
-i " pandas.Series.dt.tz_localize PR01,PR02" \
135
104
-i " pandas.Series.dt.unit GL08" \
136
- -i " pandas.Series.gt SA01" \
137
- -i " pandas.Series.list.__getitem__ SA01" \
138
- -i " pandas.Series.list.flatten SA01" \
139
- -i " pandas.Series.list.len SA01" \
140
- -i " pandas.Series.lt SA01" \
141
- -i " pandas.Series.ne SA01" \
142
105
-i " pandas.Series.pad PR01,SA01" \
143
- -i " pandas.Series.pop SA01" \
144
- -i " pandas.Series.prod RT03" \
145
- -i " pandas.Series.product RT03" \
146
- -i " pandas.Series.reorder_levels RT03,SA01" \
147
- -i " pandas.Series.sem PR01,RT03,SA01" \
148
- -i " pandas.Series.sparse PR01,SA01" \
149
- -i " pandas.Series.sparse.density SA01" \
150
106
-i " pandas.Series.sparse.fill_value SA01" \
151
107
-i " pandas.Series.sparse.from_coo PR07,SA01" \
152
108
-i " pandas.Series.sparse.npoints SA01" \
153
109
-i " pandas.Series.sparse.sp_values SA01" \
154
- -i " pandas.Series.sparse.to_coo PR07,RT03,SA01" \
155
- -i " pandas.Series.std PR01,RT03,SA01" \
156
- -i " pandas.Series.str.match RT03" \
157
- -i " pandas.Series.str.normalize RT03,SA01" \
158
- -i " pandas.Series.str.repeat SA01" \
159
- -i " pandas.Series.str.replace SA01" \
160
- -i " pandas.Series.str.wrap RT03,SA01" \
161
- -i " pandas.Series.str.zfill RT03" \
162
- -i " pandas.Series.struct.dtypes SA01" \
163
- -i " pandas.Series.to_markdown SA01" \
164
- -i " pandas.Series.update PR07,SA01" \
165
- -i " pandas.Timedelta.asm8 SA01" \
166
- -i " pandas.Timedelta.ceil SA01" \
167
110
-i " pandas.Timedelta.components SA01" \
168
- -i " pandas.Timedelta.floor SA01" \
169
111
-i " pandas.Timedelta.max PR02" \
170
112
-i " pandas.Timedelta.min PR02" \
171
113
-i " pandas.Timedelta.resolution PR02" \
172
- -i " pandas.Timedelta.round SA01" \
173
- -i " pandas.Timedelta.to_numpy PR01" \
174
114
-i " pandas.Timedelta.to_timedelta64 SA01" \
175
115
-i " pandas.Timedelta.total_seconds SA01" \
176
- -i " pandas.Timedelta.view SA01" \
177
- -i " pandas.TimedeltaIndex.as_unit RT03,SA01" \
178
- -i " pandas.TimedeltaIndex.components SA01" \
179
- -i " pandas.TimedeltaIndex.microseconds SA01" \
180
116
-i " pandas.TimedeltaIndex.nanoseconds SA01" \
181
117
-i " pandas.TimedeltaIndex.seconds SA01" \
182
118
-i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
183
- -i " pandas.Timestamp.combine PR01,SA01" \
184
- -i " pandas.Timestamp.ctime SA01" \
185
- -i " pandas.Timestamp.date SA01" \
186
- -i " pandas.Timestamp.day GL08" \
187
- -i " pandas.Timestamp.fold GL08" \
188
- -i " pandas.Timestamp.fromordinal SA01" \
189
- -i " pandas.Timestamp.fromtimestamp PR01,SA01" \
190
- -i " pandas.Timestamp.hour GL08" \
191
119
-i " pandas.Timestamp.max PR02" \
192
- -i " pandas.Timestamp.microsecond GL08" \
193
120
-i " pandas.Timestamp.min PR02" \
194
- -i " pandas.Timestamp.minute GL08" \
195
- -i " pandas.Timestamp.month GL08" \
196
- -i " pandas.Timestamp.month_name SA01" \
197
121
-i " pandas.Timestamp.nanosecond GL08" \
198
- -i " pandas.Timestamp.normalize SA01" \
199
- -i " pandas.Timestamp.quarter SA01" \
200
- -i " pandas.Timestamp.replace PR07,SA01" \
201
122
-i " pandas.Timestamp.resolution PR02" \
202
- -i " pandas.Timestamp.second GL08" \
203
- -i " pandas.Timestamp.strptime PR01,SA01" \
204
- -i " pandas.Timestamp.timestamp SA01" \
205
- -i " pandas.Timestamp.timetuple SA01" \
206
- -i " pandas.Timestamp.timetz SA01" \
207
- -i " pandas.Timestamp.to_datetime64 SA01" \
208
- -i " pandas.Timestamp.to_julian_date SA01" \
209
- -i " pandas.Timestamp.to_numpy PR01" \
210
- -i " pandas.Timestamp.to_period PR01,SA01" \
211
- -i " pandas.Timestamp.today SA01" \
212
- -i " pandas.Timestamp.toordinal SA01" \
213
123
-i " pandas.Timestamp.tzinfo GL08" \
214
- -i " pandas.Timestamp.value GL08" \
215
124
-i " pandas.Timestamp.year GL08" \
216
- -i " pandas.api.extensions.ExtensionArray._pad_or_backfill PR01,RT03,SA01" \
217
- -i " pandas.api.extensions.ExtensionArray._reduce RT03,SA01" \
218
- -i " pandas.api.extensions.ExtensionArray._values_for_factorize SA01" \
219
- -i " pandas.api.extensions.ExtensionArray.astype SA01" \
220
- -i " pandas.api.extensions.ExtensionArray.dropna RT03,SA01" \
221
- -i " pandas.api.extensions.ExtensionArray.dtype SA01" \
222
- -i " pandas.api.extensions.ExtensionArray.duplicated RT03,SA01" \
223
- -i " pandas.api.extensions.ExtensionArray.fillna SA01" \
224
- -i " pandas.api.extensions.ExtensionArray.insert PR07,RT03,SA01" \
225
125
-i " pandas.api.extensions.ExtensionArray.interpolate PR01,SA01" \
226
- -i " pandas.api.extensions.ExtensionArray.isin PR07,RT03,SA01" \
227
- -i " pandas.api.extensions.ExtensionArray.isna SA01" \
228
- -i " pandas.api.extensions.ExtensionArray.nbytes SA01" \
229
- -i " pandas.api.extensions.ExtensionArray.ndim SA01" \
230
- -i " pandas.api.extensions.ExtensionArray.ravel RT03,SA01" \
231
- -i " pandas.api.extensions.ExtensionArray.take RT03" \
232
- -i " pandas.api.extensions.ExtensionArray.tolist RT03,SA01" \
233
- -i " pandas.api.extensions.ExtensionArray.unique RT03,SA01" \
234
- -i " pandas.api.extensions.ExtensionArray.view SA01" \
235
- -i " pandas.api.interchange.from_dataframe RT03,SA01" \
236
126
-i " pandas.api.types.is_bool PR01,SA01" \
237
127
-i " pandas.api.types.is_categorical_dtype SA01" \
238
128
-i " pandas.api.types.is_complex PR01,SA01" \
@@ -284,7 +174,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
284
174
-i " pandas.core.groupby.DataFrameGroupBy.nunique SA01" \
285
175
-i " pandas.core.groupby.DataFrameGroupBy.ohlc SA01" \
286
176
-i " pandas.core.groupby.DataFrameGroupBy.plot PR02" \
287
- -i " pandas.core.groupby.DataFrameGroupBy.prod SA01" \
288
177
-i " pandas.core.groupby.DataFrameGroupBy.sem SA01" \
289
178
-i " pandas.core.groupby.DataFrameGroupBy.sum SA01" \
290
179
-i " pandas.core.groupby.SeriesGroupBy.__iter__ RT03,SA01" \
@@ -301,7 +190,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
301
190
-i " pandas.core.groupby.SeriesGroupBy.nth PR02" \
302
191
-i " pandas.core.groupby.SeriesGroupBy.ohlc SA01" \
303
192
-i " pandas.core.groupby.SeriesGroupBy.plot PR02" \
304
- -i " pandas.core.groupby.SeriesGroupBy.prod SA01" \
305
193
-i " pandas.core.groupby.SeriesGroupBy.sem SA01" \
306
194
-i " pandas.core.groupby.SeriesGroupBy.sum SA01" \
307
195
-i " pandas.core.resample.Resampler.__iter__ RT03,SA01" \
@@ -320,13 +208,7 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
320
208
-i " pandas.core.resample.Resampler.sum SA01" \
321
209
-i " pandas.core.resample.Resampler.transform PR01,RT03,SA01" \
322
210
-i " pandas.core.resample.Resampler.var SA01" \
323
- -i " pandas.core.window.expanding.Expanding.corr PR01" \
324
- -i " pandas.core.window.expanding.Expanding.count PR01" \
325
- -i " pandas.core.window.rolling.Rolling.max PR01" \
326
- -i " pandas.core.window.rolling.Window.std PR01" \
327
- -i " pandas.core.window.rolling.Window.var PR01" \
328
211
-i " pandas.date_range RT03" \
329
- -i " pandas.errors.AbstractMethodError PR01,SA01" \
330
212
-i " pandas.errors.AttributeConflictWarning SA01" \
331
213
-i " pandas.errors.CSSWarning SA01" \
332
214
-i " pandas.errors.CategoricalConversionWarning SA01" \
@@ -354,34 +236,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
354
236
-i " pandas.errors.UnsupportedFunctionCall SA01" \
355
237
-i " pandas.errors.ValueLabelTypeMismatch SA01" \
356
238
-i " pandas.infer_freq SA01" \
357
- -i " pandas.io.formats.style.Styler.apply RT03" \
358
- -i " pandas.io.formats.style.Styler.apply_index RT03" \
359
- -i " pandas.io.formats.style.Styler.background_gradient RT03" \
360
- -i " pandas.io.formats.style.Styler.bar RT03,SA01" \
361
- -i " pandas.io.formats.style.Styler.clear SA01" \
362
- -i " pandas.io.formats.style.Styler.concat RT03,SA01" \
363
- -i " pandas.io.formats.style.Styler.export RT03" \
364
- -i " pandas.io.formats.style.Styler.from_custom_template SA01" \
365
- -i " pandas.io.formats.style.Styler.hide RT03,SA01" \
366
- -i " pandas.io.formats.style.Styler.highlight_between RT03" \
367
- -i " pandas.io.formats.style.Styler.highlight_max RT03" \
368
- -i " pandas.io.formats.style.Styler.highlight_min RT03" \
369
- -i " pandas.io.formats.style.Styler.highlight_null RT03" \
370
- -i " pandas.io.formats.style.Styler.highlight_quantile RT03" \
371
- -i " pandas.io.formats.style.Styler.map RT03" \
372
- -i " pandas.io.formats.style.Styler.map_index RT03" \
373
- -i " pandas.io.formats.style.Styler.set_caption RT03,SA01" \
374
- -i " pandas.io.formats.style.Styler.set_properties RT03,SA01" \
375
- -i " pandas.io.formats.style.Styler.set_sticky RT03,SA01" \
376
- -i " pandas.io.formats.style.Styler.set_table_attributes PR07,RT03" \
377
- -i " pandas.io.formats.style.Styler.set_table_styles RT03" \
378
- -i " pandas.io.formats.style.Styler.set_td_classes RT03" \
379
- -i " pandas.io.formats.style.Styler.set_tooltips RT03,SA01" \
380
- -i " pandas.io.formats.style.Styler.set_uuid PR07,RT03,SA01" \
381
- -i " pandas.io.formats.style.Styler.text_gradient RT03" \
382
- -i " pandas.io.formats.style.Styler.to_excel PR01" \
383
- -i " pandas.io.formats.style.Styler.to_string SA01" \
384
- -i " pandas.io.formats.style.Styler.use RT03" \
385
239
-i " pandas.io.json.build_table_schema PR07,RT03,SA01" \
386
240
-i " pandas.io.stata.StataReader.data_label SA01" \
387
241
-i " pandas.io.stata.StataReader.value_labels RT03,SA01" \
0 commit comments