@@ -70,15 +70,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
70
70
--format=actions \
71
71
-i ES01 ` # For now it is ok if docstrings are missing the extended summary` \
72
72
-i " pandas.Series.dt PR01" ` # Accessors are implemented as classes, but we do not document the Parameters section` \
73
- -i " pandas.NA SA01" \
74
73
-i " pandas.Period.freq GL08" \
75
74
-i " pandas.Period.ordinal GL08" \
76
- -i " pandas.Period.to_timestamp SA01" \
77
- -i " pandas.PeriodDtype.freq SA01" \
78
75
-i " pandas.RangeIndex.from_range PR01,SA01" \
79
- -i " pandas.RangeIndex.start SA01" \
80
- -i " pandas.RangeIndex.step SA01" \
81
- -i " pandas.RangeIndex.stop SA01" \
82
76
-i " pandas.Series.cat.add_categories PR01,PR02" \
83
77
-i " pandas.Series.cat.as_ordered PR01" \
84
78
-i " pandas.Series.cat.as_unordered PR01" \
@@ -93,10 +87,8 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
93
87
-i " pandas.Series.dt.floor PR01,PR02" \
94
88
-i " pandas.Series.dt.freq GL08" \
95
89
-i " pandas.Series.dt.month_name PR01,PR02" \
96
- -i " pandas.Series.dt.nanoseconds SA01" \
97
90
-i " pandas.Series.dt.normalize PR01" \
98
91
-i " pandas.Series.dt.round PR01,PR02" \
99
- -i " pandas.Series.dt.seconds SA01" \
100
92
-i " pandas.Series.dt.strftime PR01,PR02" \
101
93
-i " pandas.Series.dt.to_period PR01,PR02" \
102
94
-i " pandas.Series.dt.total_seconds PR01" \
@@ -105,96 +97,50 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
105
97
-i " pandas.Series.dt.unit GL08" \
106
98
-i " pandas.Series.pad PR01,SA01" \
107
99
-i " pandas.Series.sparse.from_coo PR07,SA01" \
108
- -i " pandas.Series.sparse.npoints SA01" \
109
- -i " pandas.Series.sparse.sp_values SA01" \
110
- -i " pandas.Timedelta.components SA01" \
111
100
-i " pandas.Timedelta.max PR02" \
112
101
-i " pandas.Timedelta.min PR02" \
113
102
-i " pandas.Timedelta.resolution PR02" \
114
- -i " pandas.Timedelta.to_timedelta64 SA01" \
115
- -i " pandas.Timedelta.total_seconds SA01" \
116
- -i " pandas.Timedelta.view SA01" \
117
- -i " pandas.TimedeltaIndex.nanoseconds SA01" \
118
- -i " pandas.TimedeltaIndex.seconds SA01" \
119
- -i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
120
103
-i " pandas.Timestamp.max PR02" \
121
104
-i " pandas.Timestamp.min PR02" \
122
105
-i " pandas.Timestamp.nanosecond GL08" \
123
106
-i " pandas.Timestamp.resolution PR02" \
124
107
-i " pandas.Timestamp.tzinfo GL08" \
125
108
-i " pandas.Timestamp.year GL08" \
126
- -i " pandas.api.extensions.ExtensionArray.interpolate PR01,SA01" \
127
- -i " pandas.api.types.is_bool PR01,SA01" \
128
- -i " pandas.api.types.is_categorical_dtype SA01" \
129
- -i " pandas.api.types.is_complex PR01,SA01" \
130
- -i " pandas.api.types.is_complex_dtype SA01" \
131
- -i " pandas.api.types.is_datetime64_dtype SA01" \
132
- -i " pandas.api.types.is_datetime64_ns_dtype SA01" \
133
- -i " pandas.api.types.is_datetime64tz_dtype SA01" \
134
- -i " pandas.api.types.is_dict_like PR07,SA01" \
135
- -i " pandas.api.types.is_extension_array_dtype SA01" \
136
- -i " pandas.api.types.is_file_like PR07,SA01" \
137
109
-i " pandas.api.types.is_float PR01,SA01" \
138
- -i " pandas.api.types.is_float_dtype SA01" \
139
- -i " pandas.api.types.is_hashable PR01,RT03,SA01" \
140
- -i " pandas.api.types.is_int64_dtype SA01" \
141
110
-i " pandas.api.types.is_integer PR01,SA01" \
142
- -i " pandas.api.types.is_integer_dtype SA01" \
143
- -i " pandas.api.types.is_interval_dtype SA01" \
144
111
-i " pandas.api.types.is_iterator PR07,SA01" \
145
- -i " pandas.api.types.is_list_like SA01" \
146
- -i " pandas.api.types.is_named_tuple PR07,SA01" \
147
- -i " pandas.api.types.is_object_dtype SA01" \
148
- -i " pandas.api.types.is_re PR07,SA01" \
149
112
-i " pandas.api.types.is_re_compilable PR07,SA01" \
150
113
-i " pandas.api.types.pandas_dtype PR07,RT03,SA01" \
151
114
-i " pandas.arrays.ArrowExtensionArray PR07,SA01" \
152
- -i " pandas.arrays.BooleanArray SA01" \
153
115
-i " pandas.arrays.DatetimeArray SA01" \
154
- -i " pandas.arrays.FloatingArray SA01" \
155
116
-i " pandas.arrays.IntegerArray SA01" \
156
117
-i " pandas.arrays.IntervalArray.left SA01" \
157
118
-i " pandas.arrays.IntervalArray.length SA01" \
158
- -i " pandas.arrays.IntervalArray.mid SA01" \
159
119
-i " pandas.arrays.IntervalArray.right SA01" \
160
120
-i " pandas.arrays.NumpyExtensionArray SA01" \
161
121
-i " pandas.arrays.SparseArray PR07,SA01" \
162
122
-i " pandas.arrays.TimedeltaArray PR07,SA01" \
163
123
-i " pandas.core.groupby.DataFrameGroupBy.__iter__ RT03,SA01" \
164
- -i " pandas.core.groupby.DataFrameGroupBy.agg RT03" \
165
- -i " pandas.core.groupby.DataFrameGroupBy.aggregate RT03" \
166
124
-i " pandas.core.groupby.DataFrameGroupBy.boxplot PR07,RT03,SA01" \
167
- -i " pandas.core.groupby.DataFrameGroupBy.filter SA01" \
168
125
-i " pandas.core.groupby.DataFrameGroupBy.get_group RT03,SA01" \
169
126
-i " pandas.core.groupby.DataFrameGroupBy.groups SA01" \
170
- -i " pandas.core.groupby.DataFrameGroupBy.hist RT03" \
171
127
-i " pandas.core.groupby.DataFrameGroupBy.indices SA01" \
172
- -i " pandas.core.groupby.DataFrameGroupBy.max SA01" \
173
- -i " pandas.core.groupby.DataFrameGroupBy.min SA01" \
174
128
-i " pandas.core.groupby.DataFrameGroupBy.nth PR02" \
175
129
-i " pandas.core.groupby.DataFrameGroupBy.nunique SA01" \
176
130
-i " pandas.core.groupby.DataFrameGroupBy.ohlc SA01" \
177
131
-i " pandas.core.groupby.DataFrameGroupBy.plot PR02" \
178
132
-i " pandas.core.groupby.DataFrameGroupBy.sem SA01" \
179
- -i " pandas.core.groupby.DataFrameGroupBy.sum SA01" \
180
133
-i " pandas.core.groupby.SeriesGroupBy.__iter__ RT03,SA01" \
181
- -i " pandas.core.groupby.SeriesGroupBy.agg RT03" \
182
- -i " pandas.core.groupby.SeriesGroupBy.aggregate RT03" \
183
- -i " pandas.core.groupby.SeriesGroupBy.filter PR01,SA01" \
184
134
-i " pandas.core.groupby.SeriesGroupBy.get_group RT03,SA01" \
185
135
-i " pandas.core.groupby.SeriesGroupBy.groups SA01" \
186
136
-i " pandas.core.groupby.SeriesGroupBy.indices SA01" \
187
137
-i " pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing SA01" \
188
138
-i " pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing SA01" \
189
- -i " pandas.core.groupby.SeriesGroupBy.max SA01" \
190
- -i " pandas.core.groupby.SeriesGroupBy.min SA01" \
191
139
-i " pandas.core.groupby.SeriesGroupBy.nth PR02" \
192
140
-i " pandas.core.groupby.SeriesGroupBy.ohlc SA01" \
193
141
-i " pandas.core.groupby.SeriesGroupBy.plot PR02" \
194
142
-i " pandas.core.groupby.SeriesGroupBy.sem SA01" \
195
- -i " pandas.core.groupby.SeriesGroupBy.sum SA01" \
196
143
-i " pandas.core.resample.Resampler.__iter__ RT03,SA01" \
197
- -i " pandas.core.resample.Resampler.ffill RT03" \
198
144
-i " pandas.core.resample.Resampler.get_group RT03,SA01" \
199
145
-i " pandas.core.resample.Resampler.groups SA01" \
200
146
-i " pandas.core.resample.Resampler.indices SA01" \
@@ -209,24 +155,19 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
209
155
-i " pandas.core.resample.Resampler.sum SA01" \
210
156
-i " pandas.core.resample.Resampler.transform PR01,RT03,SA01" \
211
157
-i " pandas.core.resample.Resampler.var SA01" \
212
- -i " pandas.date_range RT03" \
213
158
-i " pandas.errors.AttributeConflictWarning SA01" \
214
159
-i " pandas.errors.CSSWarning SA01" \
215
160
-i " pandas.errors.CategoricalConversionWarning SA01" \
216
161
-i " pandas.errors.ChainedAssignmentError SA01" \
217
- -i " pandas.errors.ClosedFileError SA01" \
218
162
-i " pandas.errors.DataError SA01" \
219
163
-i " pandas.errors.DuplicateLabelError SA01" \
220
- -i " pandas.errors.EmptyDataError SA01" \
221
164
-i " pandas.errors.IntCastingNaNError SA01" \
222
165
-i " pandas.errors.InvalidIndexError SA01" \
223
166
-i " pandas.errors.InvalidVersion SA01" \
224
- -i " pandas.errors.MergeError SA01" \
225
167
-i " pandas.errors.NullFrequencyError SA01" \
226
168
-i " pandas.errors.NumExprClobberingError SA01" \
227
169
-i " pandas.errors.NumbaUtilError SA01" \
228
170
-i " pandas.errors.OptionError SA01" \
229
- -i " pandas.errors.OutOfBoundsDatetime SA01" \
230
171
-i " pandas.errors.OutOfBoundsTimedelta SA01" \
231
172
-i " pandas.errors.PerformanceWarning SA01" \
232
173
-i " pandas.errors.PossibleDataLossError SA01" \
@@ -400,7 +341,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
400
341
-i " pandas.tseries.offsets.SemiMonthBegin.n GL08" \
401
342
-i " pandas.tseries.offsets.SemiMonthBegin.normalize GL08" \
402
343
-i " pandas.tseries.offsets.SemiMonthBegin.rule_code GL08" \
403
- -i " pandas.tseries.offsets.SemiMonthEnd SA01" \
404
344
-i " pandas.tseries.offsets.SemiMonthEnd.day_of_month GL08" \
405
345
-i " pandas.tseries.offsets.SemiMonthEnd.is_on_offset GL08" \
406
346
-i " pandas.tseries.offsets.SemiMonthEnd.n GL08" \
@@ -414,7 +354,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
414
354
-i " pandas.tseries.offsets.Week.n GL08" \
415
355
-i " pandas.tseries.offsets.Week.normalize GL08" \
416
356
-i " pandas.tseries.offsets.Week.weekday GL08" \
417
- -i " pandas.tseries.offsets.WeekOfMonth SA01" \
418
357
-i " pandas.tseries.offsets.WeekOfMonth.is_on_offset GL08" \
419
358
-i " pandas.tseries.offsets.WeekOfMonth.n GL08" \
420
359
-i " pandas.tseries.offsets.WeekOfMonth.normalize GL08" \
0 commit comments