@@ -71,7 +71,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
71
71
-i ES01 ` # For now it is ok if docstrings are missing the extended summary` \
72
72
-i " pandas.Series.dt PR01" ` # Accessors are implemented as classes, but we do not document the Parameters section` \
73
73
-i " pandas.MultiIndex.reorder_levels RT03,SA01" \
74
- -i " pandas.MultiIndex.to_frame RT03" \
75
74
-i " pandas.NA SA01" \
76
75
-i " pandas.NaT SA01" \
77
76
-i " pandas.Period.freq GL08" \
@@ -81,27 +80,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
81
80
-i " pandas.Period.to_timestamp SA01" \
82
81
-i " pandas.PeriodDtype SA01" \
83
82
-i " pandas.PeriodDtype.freq SA01" \
84
- -i " pandas.PeriodIndex.day SA01" \
85
- -i " pandas.PeriodIndex.day_of_week SA01" \
86
- -i " pandas.PeriodIndex.day_of_year SA01" \
87
- -i " pandas.PeriodIndex.dayofweek SA01" \
88
- -i " pandas.PeriodIndex.dayofyear SA01" \
89
- -i " pandas.PeriodIndex.days_in_month SA01" \
90
- -i " pandas.PeriodIndex.daysinmonth SA01" \
91
- -i " pandas.PeriodIndex.from_fields PR07,SA01" \
92
- -i " pandas.PeriodIndex.from_ordinals SA01" \
93
- -i " pandas.PeriodIndex.hour SA01" \
94
- -i " pandas.PeriodIndex.is_leap_year SA01" \
95
- -i " pandas.PeriodIndex.minute SA01" \
96
- -i " pandas.PeriodIndex.month SA01" \
97
- -i " pandas.PeriodIndex.quarter SA01" \
98
- -i " pandas.PeriodIndex.qyear GL08" \
99
- -i " pandas.PeriodIndex.second SA01" \
100
- -i " pandas.PeriodIndex.to_timestamp RT03,SA01" \
101
- -i " pandas.PeriodIndex.week SA01" \
102
- -i " pandas.PeriodIndex.weekday SA01" \
103
- -i " pandas.PeriodIndex.weekofyear SA01" \
104
- -i " pandas.PeriodIndex.year SA01" \
105
83
-i " pandas.RangeIndex PR07" \
106
84
-i " pandas.RangeIndex.from_range PR01,SA01" \
107
85
-i " pandas.RangeIndex.start SA01" \
@@ -124,7 +102,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
124
102
-i " pandas.Series.dt.month_name PR01,PR02" \
125
103
-i " pandas.Series.dt.nanoseconds SA01" \
126
104
-i " pandas.Series.dt.normalize PR01" \
127
- -i " pandas.Series.dt.qyear GL08" \
128
105
-i " pandas.Series.dt.round PR01,PR02" \
129
106
-i " pandas.Series.dt.seconds SA01" \
130
107
-i " pandas.Series.dt.strftime PR01,PR02" \
@@ -133,34 +110,11 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
133
110
-i " pandas.Series.dt.tz_convert PR01,PR02" \
134
111
-i " pandas.Series.dt.tz_localize PR01,PR02" \
135
112
-i " pandas.Series.dt.unit GL08" \
136
- -i " pandas.Series.gt SA01" \
137
- -i " pandas.Series.list.__getitem__ SA01" \
138
- -i " pandas.Series.list.flatten SA01" \
139
- -i " pandas.Series.list.len SA01" \
140
- -i " pandas.Series.lt SA01" \
141
- -i " pandas.Series.ne SA01" \
142
113
-i " pandas.Series.pad PR01,SA01" \
143
- -i " pandas.Series.pop SA01" \
144
- -i " pandas.Series.prod RT03" \
145
- -i " pandas.Series.product RT03" \
146
- -i " pandas.Series.reorder_levels RT03,SA01" \
147
- -i " pandas.Series.sem PR01,RT03,SA01" \
148
- -i " pandas.Series.sparse PR01,SA01" \
149
- -i " pandas.Series.sparse.density SA01" \
150
114
-i " pandas.Series.sparse.fill_value SA01" \
151
115
-i " pandas.Series.sparse.from_coo PR07,SA01" \
152
116
-i " pandas.Series.sparse.npoints SA01" \
153
117
-i " pandas.Series.sparse.sp_values SA01" \
154
- -i " pandas.Series.sparse.to_coo PR07,RT03,SA01" \
155
- -i " pandas.Series.std PR01,RT03,SA01" \
156
- -i " pandas.Series.str.match RT03" \
157
- -i " pandas.Series.str.normalize RT03,SA01" \
158
- -i " pandas.Series.str.repeat SA01" \
159
- -i " pandas.Series.str.replace SA01" \
160
- -i " pandas.Series.str.wrap RT03,SA01" \
161
- -i " pandas.Series.str.zfill RT03" \
162
- -i " pandas.Series.struct.dtypes SA01" \
163
- -i " pandas.Series.to_markdown SA01" \
164
118
-i " pandas.Timedelta.asm8 SA01" \
165
119
-i " pandas.Timedelta.ceil SA01" \
166
120
-i " pandas.Timedelta.components SA01" \
@@ -173,40 +127,19 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
173
127
-i " pandas.Timedelta.to_timedelta64 SA01" \
174
128
-i " pandas.Timedelta.total_seconds SA01" \
175
129
-i " pandas.Timedelta.view SA01" \
176
- -i " pandas.TimedeltaIndex.as_unit RT03,SA01" \
177
130
-i " pandas.TimedeltaIndex.components SA01" \
178
131
-i " pandas.TimedeltaIndex.microseconds SA01" \
179
132
-i " pandas.TimedeltaIndex.nanoseconds SA01" \
180
133
-i " pandas.TimedeltaIndex.seconds SA01" \
181
134
-i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
182
- -i " pandas.Timestamp.day GL08" \
183
- -i " pandas.Timestamp.fold GL08" \
184
- -i " pandas.Timestamp.hour GL08" \
185
135
-i " pandas.Timestamp.max PR02" \
186
- -i " pandas.Timestamp.microsecond GL08" \
187
136
-i " pandas.Timestamp.min PR02" \
188
- -i " pandas.Timestamp.minute GL08" \
189
- -i " pandas.Timestamp.month GL08" \
190
137
-i " pandas.Timestamp.nanosecond GL08" \
191
138
-i " pandas.Timestamp.resolution PR02" \
192
- -i " pandas.Timestamp.second GL08" \
193
139
-i " pandas.Timestamp.tzinfo GL08" \
194
140
-i " pandas.Timestamp.value GL08" \
195
141
-i " pandas.Timestamp.year GL08" \
196
- -i " pandas.api.extensions.ExtensionArray._pad_or_backfill PR01,RT03,SA01" \
197
- -i " pandas.api.extensions.ExtensionArray._reduce RT03,SA01" \
198
- -i " pandas.api.extensions.ExtensionArray._values_for_factorize SA01" \
199
- -i " pandas.api.extensions.ExtensionArray.astype SA01" \
200
- -i " pandas.api.extensions.ExtensionArray.dropna RT03,SA01" \
201
- -i " pandas.api.extensions.ExtensionArray.dtype SA01" \
202
- -i " pandas.api.extensions.ExtensionArray.duplicated RT03,SA01" \
203
- -i " pandas.api.extensions.ExtensionArray.fillna SA01" \
204
- -i " pandas.api.extensions.ExtensionArray.insert PR07,RT03,SA01" \
205
142
-i " pandas.api.extensions.ExtensionArray.interpolate PR01,SA01" \
206
- -i " pandas.api.extensions.ExtensionArray.isin PR07,RT03,SA01" \
207
- -i " pandas.api.extensions.ExtensionArray.tolist RT03,SA01" \
208
- -i " pandas.api.extensions.ExtensionArray.unique RT03,SA01" \
209
- -i " pandas.api.extensions.ExtensionArray.view SA01" \
210
143
-i " pandas.api.interchange.from_dataframe RT03,SA01" \
211
144
-i " pandas.api.types.is_bool PR01,SA01" \
212
145
-i " pandas.api.types.is_categorical_dtype SA01" \
@@ -259,7 +192,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
259
192
-i " pandas.core.groupby.DataFrameGroupBy.nunique SA01" \
260
193
-i " pandas.core.groupby.DataFrameGroupBy.ohlc SA01" \
261
194
-i " pandas.core.groupby.DataFrameGroupBy.plot PR02" \
262
- -i " pandas.core.groupby.DataFrameGroupBy.prod SA01" \
263
195
-i " pandas.core.groupby.DataFrameGroupBy.sem SA01" \
264
196
-i " pandas.core.groupby.DataFrameGroupBy.sum SA01" \
265
197
-i " pandas.core.groupby.SeriesGroupBy.__iter__ RT03,SA01" \
@@ -276,7 +208,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
276
208
-i " pandas.core.groupby.SeriesGroupBy.nth PR02" \
277
209
-i " pandas.core.groupby.SeriesGroupBy.ohlc SA01" \
278
210
-i " pandas.core.groupby.SeriesGroupBy.plot PR02" \
279
- -i " pandas.core.groupby.SeriesGroupBy.prod SA01" \
280
211
-i " pandas.core.groupby.SeriesGroupBy.sem SA01" \
281
212
-i " pandas.core.groupby.SeriesGroupBy.sum SA01" \
282
213
-i " pandas.core.resample.Resampler.__iter__ RT03,SA01" \
@@ -295,11 +226,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
295
226
-i " pandas.core.resample.Resampler.sum SA01" \
296
227
-i " pandas.core.resample.Resampler.transform PR01,RT03,SA01" \
297
228
-i " pandas.core.resample.Resampler.var SA01" \
298
- -i " pandas.core.window.expanding.Expanding.corr PR01" \
299
- -i " pandas.core.window.expanding.Expanding.count PR01" \
300
- -i " pandas.core.window.rolling.Rolling.max PR01" \
301
- -i " pandas.core.window.rolling.Window.std PR01" \
302
- -i " pandas.core.window.rolling.Window.var PR01" \
303
229
-i " pandas.date_range RT03" \
304
230
-i " pandas.errors.AbstractMethodError PR01,SA01" \
305
231
-i " pandas.errors.AttributeConflictWarning SA01" \
@@ -329,34 +255,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
329
255
-i " pandas.errors.UnsupportedFunctionCall SA01" \
330
256
-i " pandas.errors.ValueLabelTypeMismatch SA01" \
331
257
-i " pandas.infer_freq SA01" \
332
- -i " pandas.io.formats.style.Styler.apply RT03" \
333
- -i " pandas.io.formats.style.Styler.apply_index RT03" \
334
- -i " pandas.io.formats.style.Styler.background_gradient RT03" \
335
- -i " pandas.io.formats.style.Styler.bar RT03,SA01" \
336
- -i " pandas.io.formats.style.Styler.clear SA01" \
337
- -i " pandas.io.formats.style.Styler.concat RT03,SA01" \
338
- -i " pandas.io.formats.style.Styler.export RT03" \
339
- -i " pandas.io.formats.style.Styler.from_custom_template SA01" \
340
- -i " pandas.io.formats.style.Styler.hide RT03,SA01" \
341
- -i " pandas.io.formats.style.Styler.highlight_between RT03" \
342
- -i " pandas.io.formats.style.Styler.highlight_max RT03" \
343
- -i " pandas.io.formats.style.Styler.highlight_min RT03" \
344
- -i " pandas.io.formats.style.Styler.highlight_null RT03" \
345
- -i " pandas.io.formats.style.Styler.highlight_quantile RT03" \
346
- -i " pandas.io.formats.style.Styler.map RT03" \
347
- -i " pandas.io.formats.style.Styler.map_index RT03" \
348
- -i " pandas.io.formats.style.Styler.set_caption RT03,SA01" \
349
- -i " pandas.io.formats.style.Styler.set_properties RT03,SA01" \
350
- -i " pandas.io.formats.style.Styler.set_sticky RT03,SA01" \
351
- -i " pandas.io.formats.style.Styler.set_table_attributes PR07,RT03" \
352
- -i " pandas.io.formats.style.Styler.set_table_styles RT03" \
353
- -i " pandas.io.formats.style.Styler.set_td_classes RT03" \
354
- -i " pandas.io.formats.style.Styler.set_tooltips RT03,SA01" \
355
- -i " pandas.io.formats.style.Styler.set_uuid PR07,RT03,SA01" \
356
- -i " pandas.io.formats.style.Styler.text_gradient RT03" \
357
- -i " pandas.io.formats.style.Styler.to_excel PR01" \
358
- -i " pandas.io.formats.style.Styler.to_string SA01" \
359
- -i " pandas.io.formats.style.Styler.use RT03" \
360
258
-i " pandas.io.json.build_table_schema PR07,RT03,SA01" \
361
259
-i " pandas.io.stata.StataReader.data_label SA01" \
362
260
-i " pandas.io.stata.StataReader.value_labels RT03,SA01" \
0 commit comments