@@ -2417,17 +2417,18 @@ def select_dtypes(self, include=None, exclude=None):
24172417
24182418 Notes
24192419 -----
2420- * To select all *numeric* types use the numpy dtype ``numpy. number``
2420+ * To select all *numeric* types, use ``np.number`` or ``' number' ``
24212421 * To select strings you must use the ``object`` dtype, but note that
24222422 this will return *all* object dtype columns
24232423 * See the `numpy dtype hierarchy
24242424 <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__
2425- * To select datetimes, use np.datetime64, 'datetime' or 'datetime64'
2426- * To select timedeltas, use np.timedelta64, 'timedelta' or
2427- 'timedelta64'
2428- * To select Pandas categorical dtypes, use 'category'
2429- * To select Pandas datetimetz dtypes, use 'datetimetz' (new in 0.20.0),
2430- or a 'datetime64[ns, tz]' string
2425+ * To select datetimes, use ``np.datetime64``, ``'datetime'`` or
2426+ ``'datetime64'``
2427+ * To select timedeltas, use ``np.timedelta64``, ``'timedelta'`` or
2428+ ``'timedelta64'``
2429+ * To select Pandas categorical dtypes, use ``'category'``
2430+ * To select Pandas datetimetz dtypes, use ``'datetimetz'`` (new in
2431+ 0.20.0) or ``'datetime64[ns, tz]'``
24312432
24322433 Examples
24332434 --------
@@ -2436,12 +2437,12 @@ def select_dtypes(self, include=None, exclude=None):
24362437 ... 'c': [1.0, 2.0] * 3})
24372438 >>> df
24382439 a b c
2439- 0 0.3962 True 1
2440- 1 0.1459 False 2
2441- 2 0.2623 True 1
2442- 3 0.0764 False 2
2443- 4 -0.9703 True 1
2444- 5 -1.2094 False 2
2440+ 0 0.3962 True 1.0
2441+ 1 0.1459 False 2.0
2442+ 2 0.2623 True 1.0
2443+ 3 0.0764 False 2.0
2444+ 4 -0.9703 True 1.0
2445+ 5 -1.2094 False 2.0
24452446 >>> df.select_dtypes(include='bool')
24462447 c
24472448 0 True
@@ -2452,12 +2453,12 @@ def select_dtypes(self, include=None, exclude=None):
24522453 5 False
24532454 >>> df.select_dtypes(include=['float64'])
24542455 c
2455- 0 1
2456- 1 2
2457- 2 1
2458- 3 2
2459- 4 1
2460- 5 2
2456+ 0 1.0
2457+ 1 2.0
2458+ 2 1.0
2459+ 3 2.0
2460+ 4 1.0
2461+ 5 2.0
24612462 >>> df.select_dtypes(exclude=['floating'])
24622463 b
24632464 0 True
0 commit comments