@@ -1816,7 +1816,7 @@ def _set_name(
1816
1816
Parrot 20.0
1817
1817
Name: Max Speed, dtype: float64
1818
1818
1819
- We can pass a list of values to group the Series data by custom labels:
1819
+ We can pass a of values to group the ` Series` data by custom labels:
1820
1820
1821
1821
>>> ser.groupby(["a", "b", "a", "b"]).mean()
1822
1822
a 210.0
@@ -1837,7 +1837,7 @@ def _set_name(
1837
1837
Parrot 25.0
1838
1838
Name: Max Speed, dtype: float64
1839
1839
1840
- We can group by a condition applied to the Series values:
1840
+ We can group by a condition applied to the ` Series` values:
1841
1841
1842
1842
>>> ser.groupby(ser > 100).mean()
1843
1843
Max Speed
@@ -1868,7 +1868,7 @@ def _set_name(
1868
1868
Parrot 25.0
1869
1869
Name: Max Speed, dtype: float64
1870
1870
1871
- We can also group by the ' Type' level of the hierarchical index
1871
+ We can also group by the ` Type` level of the hierarchical index
1872
1872
to get the mean speed for each type:
1873
1873
1874
1874
>>> ser.groupby(level="Type").mean()
@@ -1894,7 +1894,7 @@ def _set_name(
1894
1894
NaN 3
1895
1895
dtype: int64
1896
1896
1897
- We can also group by a custom list with NaN values to handle
1897
+ We can also group by a custom with ` NaN` values to handle
1898
1898
missing group labels:
1899
1899
1900
1900
>>> arrays = ['Falcon', 'Falcon', 'Parrot', 'Parrot']
0 commit comments