@@ -70,15 +70,10 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
70
70
--format=actions \
71
71
-i ES01 ` # For now it is ok if docstrings are missing the extended summary` \
72
72
-i " pandas.Series.dt PR01" ` # Accessors are implemented as classes, but we do not document the Parameters section` \
73
- -i " pandas.NA SA01" \
74
73
-i " pandas.Period.freq GL08" \
75
74
-i " pandas.Period.ordinal GL08" \
76
- -i " pandas.Period.to_timestamp SA01" \
77
- -i " pandas.PeriodDtype.freq SA01" \
78
75
-i " pandas.RangeIndex.from_range PR01,SA01" \
79
- -i " pandas.RangeIndex.start SA01" \
80
76
-i " pandas.RangeIndex.step SA01" \
81
- -i " pandas.RangeIndex.stop SA01" \
82
77
-i " pandas.Series.cat.add_categories PR01,PR02" \
83
78
-i " pandas.Series.cat.as_ordered PR01" \
84
79
-i " pandas.Series.cat.as_unordered PR01" \
@@ -92,12 +87,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
92
87
-i " pandas.Series.dt.day_name PR01,PR02" \
93
88
-i " pandas.Series.dt.floor PR01,PR02" \
94
89
-i " pandas.Series.dt.freq GL08" \
95
- -i " pandas.Series.dt.microseconds SA01" \
96
90
-i " pandas.Series.dt.month_name PR01,PR02" \
97
- -i " pandas.Series.dt.nanoseconds SA01" \
98
91
-i " pandas.Series.dt.normalize PR01" \
99
92
-i " pandas.Series.dt.round PR01,PR02" \
100
- -i " pandas.Series.dt.seconds SA01" \
101
93
-i " pandas.Series.dt.strftime PR01,PR02" \
102
94
-i " pandas.Series.dt.to_period PR01,PR02" \
103
95
-i " pandas.Series.dt.total_seconds PR01" \
@@ -109,48 +101,24 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
109
101
-i " pandas.Series.sparse.from_coo PR07,SA01" \
110
102
-i " pandas.Series.sparse.npoints SA01" \
111
103
-i " pandas.Series.sparse.sp_values SA01" \
112
- -i " pandas.Timedelta.asm8 SA01" \
113
- -i " pandas.Timedelta.ceil SA01" \
114
- -i " pandas.Timedelta.components SA01" \
115
- -i " pandas.Timedelta.floor SA01" \
116
104
-i " pandas.Timedelta.max PR02" \
117
105
-i " pandas.Timedelta.min PR02" \
118
106
-i " pandas.Timedelta.resolution PR02" \
119
- -i " pandas.Timedelta.round SA01" \
120
- -i " pandas.Timedelta.to_numpy PR01" \
121
107
-i " pandas.Timedelta.to_timedelta64 SA01" \
122
- -i " pandas.Timedelta.total_seconds SA01" \
123
- -i " pandas.Timedelta.view SA01" \
124
- -i " pandas.TimedeltaIndex.components SA01" \
125
- -i " pandas.TimedeltaIndex.microseconds SA01" \
126
- -i " pandas.TimedeltaIndex.nanoseconds SA01" \
127
- -i " pandas.TimedeltaIndex.seconds SA01" \
128
108
-i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
129
109
-i " pandas.Timestamp.max PR02" \
130
110
-i " pandas.Timestamp.min PR02" \
131
111
-i " pandas.Timestamp.nanosecond GL08" \
132
112
-i " pandas.Timestamp.resolution PR02" \
133
113
-i " pandas.Timestamp.tzinfo GL08" \
134
- -i " pandas.Timestamp.value GL08" \
135
114
-i " pandas.Timestamp.year GL08" \
136
- -i " pandas.api.extensions.ExtensionArray.interpolate PR01,SA01" \
137
- -i " pandas.api.interchange.from_dataframe RT03,SA01" \
138
- -i " pandas.api.types.is_bool PR01,SA01" \
139
- -i " pandas.api.types.is_categorical_dtype SA01" \
140
- -i " pandas.api.types.is_complex PR01,SA01" \
141
- -i " pandas.api.types.is_complex_dtype SA01" \
142
- -i " pandas.api.types.is_datetime64_dtype SA01" \
143
- -i " pandas.api.types.is_datetime64_ns_dtype SA01" \
144
- -i " pandas.api.types.is_datetime64tz_dtype SA01" \
145
115
-i " pandas.api.types.is_dict_like PR07,SA01" \
146
- -i " pandas.api.types.is_extension_array_dtype SA01" \
147
116
-i " pandas.api.types.is_file_like PR07,SA01" \
148
117
-i " pandas.api.types.is_float PR01,SA01" \
149
118
-i " pandas.api.types.is_float_dtype SA01" \
150
119
-i " pandas.api.types.is_hashable PR01,RT03,SA01" \
151
120
-i " pandas.api.types.is_int64_dtype SA01" \
152
121
-i " pandas.api.types.is_integer PR01,SA01" \
153
- -i " pandas.api.types.is_integer_dtype SA01" \
154
122
-i " pandas.api.types.is_interval_dtype SA01" \
155
123
-i " pandas.api.types.is_iterator PR07,SA01" \
156
124
-i " pandas.api.types.is_list_like SA01" \
@@ -162,7 +130,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
162
130
-i " pandas.arrays.ArrowExtensionArray PR07,SA01" \
163
131
-i " pandas.arrays.BooleanArray SA01" \
164
132
-i " pandas.arrays.DatetimeArray SA01" \
165
- -i " pandas.arrays.FloatingArray SA01" \
166
133
-i " pandas.arrays.IntegerArray SA01" \
167
134
-i " pandas.arrays.IntervalArray.left SA01" \
168
135
-i " pandas.arrays.IntervalArray.length SA01" \
@@ -175,35 +142,26 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
175
142
-i " pandas.core.groupby.DataFrameGroupBy.agg RT03" \
176
143
-i " pandas.core.groupby.DataFrameGroupBy.aggregate RT03" \
177
144
-i " pandas.core.groupby.DataFrameGroupBy.boxplot PR07,RT03,SA01" \
178
- -i " pandas.core.groupby.DataFrameGroupBy.filter SA01" \
179
145
-i " pandas.core.groupby.DataFrameGroupBy.get_group RT03,SA01" \
180
146
-i " pandas.core.groupby.DataFrameGroupBy.groups SA01" \
181
- -i " pandas.core.groupby.DataFrameGroupBy.hist RT03" \
182
147
-i " pandas.core.groupby.DataFrameGroupBy.indices SA01" \
183
- -i " pandas.core.groupby.DataFrameGroupBy.max SA01" \
184
- -i " pandas.core.groupby.DataFrameGroupBy.min SA01" \
185
148
-i " pandas.core.groupby.DataFrameGroupBy.nth PR02" \
186
149
-i " pandas.core.groupby.DataFrameGroupBy.nunique SA01" \
187
150
-i " pandas.core.groupby.DataFrameGroupBy.ohlc SA01" \
188
151
-i " pandas.core.groupby.DataFrameGroupBy.plot PR02" \
189
152
-i " pandas.core.groupby.DataFrameGroupBy.sem SA01" \
190
- -i " pandas.core.groupby.DataFrameGroupBy.sum SA01" \
191
153
-i " pandas.core.groupby.SeriesGroupBy.__iter__ RT03,SA01" \
192
154
-i " pandas.core.groupby.SeriesGroupBy.agg RT03" \
193
155
-i " pandas.core.groupby.SeriesGroupBy.aggregate RT03" \
194
- -i " pandas.core.groupby.SeriesGroupBy.filter PR01,SA01" \
195
156
-i " pandas.core.groupby.SeriesGroupBy.get_group RT03,SA01" \
196
157
-i " pandas.core.groupby.SeriesGroupBy.groups SA01" \
197
158
-i " pandas.core.groupby.SeriesGroupBy.indices SA01" \
198
159
-i " pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing SA01" \
199
160
-i " pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing SA01" \
200
- -i " pandas.core.groupby.SeriesGroupBy.max SA01" \
201
- -i " pandas.core.groupby.SeriesGroupBy.min SA01" \
202
161
-i " pandas.core.groupby.SeriesGroupBy.nth PR02" \
203
162
-i " pandas.core.groupby.SeriesGroupBy.ohlc SA01" \
204
163
-i " pandas.core.groupby.SeriesGroupBy.plot PR02" \
205
164
-i " pandas.core.groupby.SeriesGroupBy.sem SA01" \
206
- -i " pandas.core.groupby.SeriesGroupBy.sum SA01" \
207
165
-i " pandas.core.resample.Resampler.__iter__ RT03,SA01" \
208
166
-i " pandas.core.resample.Resampler.ffill RT03" \
209
167
-i " pandas.core.resample.Resampler.get_group RT03,SA01" \
@@ -232,7 +190,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
232
190
-i " pandas.errors.IntCastingNaNError SA01" \
233
191
-i " pandas.errors.InvalidIndexError SA01" \
234
192
-i " pandas.errors.InvalidVersion SA01" \
235
- -i " pandas.errors.MergeError SA01" \
236
193
-i " pandas.errors.NullFrequencyError SA01" \
237
194
-i " pandas.errors.NumExprClobberingError SA01" \
238
195
-i " pandas.errors.NumbaUtilError SA01" \
@@ -425,7 +382,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
425
382
-i " pandas.tseries.offsets.Week.n GL08" \
426
383
-i " pandas.tseries.offsets.Week.normalize GL08" \
427
384
-i " pandas.tseries.offsets.Week.weekday GL08" \
428
- -i " pandas.tseries.offsets.WeekOfMonth SA01" \
429
385
-i " pandas.tseries.offsets.WeekOfMonth.is_on_offset GL08" \
430
386
-i " pandas.tseries.offsets.WeekOfMonth.n GL08" \
431
387
-i " pandas.tseries.offsets.WeekOfMonth.normalize GL08" \
0 commit comments