|
7 | 7 | # Explanations for the ExtensionArrays listed below:
|
8 | 8 | #
|
9 | 9 | # ArrowExtensionArray: Wraps an Apache Arrow array for high-performance data handling.
|
| 10 | +# |
10 | 11 | # ArrowStringArray: A specific version for string data backed by Apache Arrow.
|
11 |
| -# BooleanArray: Stores boolean data (True, False) but with the ability to hold missing values (NA). |
12 |
| -# Categorical: For data that belongs to a fixed, finite set of categories. Very memory efficient. |
| 12 | +# |
| 13 | +# BooleanArray: Stores boolean data (True, False) but with the |
| 14 | +# ability to hold missing values (NA). |
| 15 | +# |
| 16 | +# Categorical: For data that belongs to a fixed, finite set of |
| 17 | +# categories. Very memory efficient. |
| 18 | +# |
13 | 19 | # DatetimeArray: Handles timezone-aware or timezone-naive date and time data.
|
14 |
| -# FloatingArray: For floating-point (decimal) numbers, with support for missing values. |
| 20 | +# |
| 21 | +# FloatingArray: For floating-point (decimal) numbers, with support |
| 22 | +# for missing values. |
| 23 | +# |
15 | 24 | # IntegerArray: For integer (whole) numbers, with support for missing values.
|
| 25 | +# |
16 | 26 | # IntervalArray: Stores data representing intervals or ranges (e.g., 1-5, 6-10).
|
17 |
| -# NumpyExtensionArray: A wrapper around a standard NumPy array, for compatibility within the extension system. |
18 |
| -# PeriodArray: For data representing regular time periods (e.g., months, quarters, years). |
| 27 | +# |
| 28 | +# NumpyExtensionArray: A wrapper around a standard NumPy array, for compatibility |
| 29 | +# within the extension system. |
| 30 | +# |
| 31 | +# PeriodArray: For data representing regular time periods (e.g., months, |
| 32 | +# quarters, years). |
| 33 | +# |
19 | 34 | # SparseArray: Memory-efficient array for data that is mostly zero or NA.
|
20 |
| -# StringArray: Dedicated array for handling string data, with support for missing values. |
21 |
| -# TimedeltaArray: For data representing durations or differences in time (e.g., 2 days, 5 hours). |
| 35 | +# |
| 36 | +# StringArray: Dedicated array for handling string data, with support |
| 37 | +# for missing values. |
| 38 | +# |
| 39 | +# TimedeltaArray: For data representing durations or differences in time |
| 40 | +# (e.g., 2 days, 5 hours). |
22 | 41 |
|
23 | 42 | from pandas.core.arrays import (
|
24 | 43 | ArrowExtensionArray,
|
|
0 commit comments