@@ -885,7 +885,7 @@ def squeeze(self, axis: Axis | None = None) -> Scalar | Series | DataFrame:
885885 dtype: int64
886886
887887 >>> even_primes.squeeze()
888- np.int64(2)
888+ 2
889889
890890 Squeezing objects with more than one value in every axis does nothing:
891891
@@ -943,7 +943,7 @@ def squeeze(self, axis: Axis | None = None) -> Scalar | Series | DataFrame:
943943 Squeezing all axes will project directly into a scalar:
944944
945945 >>> df_0a.squeeze()
946- np.int64(1)
946+ 1
947947 """
948948 axes = range (self ._AXIS_LEN ) if axis is None else (self ._get_axis_number (axis ),)
949949 result = self .iloc [
@@ -1918,7 +1918,7 @@ def keys(self) -> Index:
19181918 b 2 4
19191919 c 3 8
19201920 >>> d.keys()
1921- Index(['A', 'B'], dtype='object ')
1921+ Index(['A', 'B'], dtype='str ')
19221922 """
19231923 return self ._info_axis
19241924
@@ -6276,7 +6276,7 @@ def dtypes(self):
62766276 float float64
62776277 int int64
62786278 datetime datetime64[s]
6279- string object
6279+ string str
62806280 dtype: object
62816281 """
62826282 data = self ._mgr .get_dtypes ()
@@ -6838,7 +6838,7 @@ def convert_dtypes(
68386838 0 a
68396839 1 b
68406840 2 NaN
6841- dtype: object
6841+ dtype: str
68426842
68436843 Obtain a Series with dtype ``StringDtype``.
68446844
@@ -7968,7 +7968,7 @@ def asof(self, where, subset=None):
79687968 dtype: float64
79697969
79707970 >>> s.asof(20)
7971- np.float64( 2.0)
7971+ 2.0
79727972
79737973 For a sequence `where`, a Series is returned. The first value is
79747974 NaN, because the first element of `where` is before the first
@@ -7983,7 +7983,7 @@ def asof(self, where, subset=None):
79837983 NaN, even though NaN is at the index location for ``30``.
79847984
79857985 >>> s.asof(30)
7986- np.float64( 2.0)
7986+ 2.0
79877987
79887988 Take all columns into consideration
79897989
@@ -8138,7 +8138,7 @@ def isna(self) -> Self:
81388138 ... )
81398139 >>> df
81408140 age born name toy
8141- 0 5.0 NaT Alfred None
8141+ 0 5.0 NaT Alfred NaN
81428142 1 6.0 1939-05-27 Batman Batmobile
81438143 2 NaN 1940-04-25 Joker
81448144
@@ -8211,7 +8211,7 @@ def notna(self) -> Self:
82118211 ... )
82128212 >>> df
82138213 age born name toy
8214- 0 5.0 NaT Alfred None
8214+ 0 5.0 NaT Alfred NaN
82158215 1 6.0 1939-05-27 Batman Batmobile
82168216 2 NaN 1940-04-25 Joker
82178217
@@ -10401,7 +10401,7 @@ def truncate(
1040110401 2 b
1040210402 3 c
1040310403 4 d
10404- Name: A, dtype: object
10404+ Name: A, dtype: str
1040510405
1040610406 The index values in ``truncate`` can be datetimes or string
1040710407 dates.
@@ -11804,7 +11804,7 @@ def first_valid_index(self) -> Hashable:
1180411804 >>> print(df.last_valid_index())
1180511805 None
1180611806
11807- If all elements in DataFrame are NA/null, returns None .
11807+ If all elements in DataFrame are NA/null, returns NaN .
1180811808
1180911809 >>> df = pd.DataFrame()
1181011810 >>> df
0 commit comments