@@ -73,136 +73,76 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
73
73
-i " pandas.Period.freq GL08" \
74
74
-i " pandas.Period.ordinal GL08" \
75
75
-i " pandas.RangeIndex.from_range PR01,SA01" \
76
- -i " pandas.Series.cat.add_categories PR01,PR02" \
77
- -i " pandas.Series.cat.as_ordered PR01" \
78
- -i " pandas.Series.cat.as_unordered PR01" \
79
- -i " pandas.Series.cat.remove_categories PR01,PR02" \
80
- -i " pandas.Series.cat.remove_unused_categories PR01" \
81
- -i " pandas.Series.cat.rename_categories PR01,PR02" \
82
- -i " pandas.Series.cat.reorder_categories PR01,PR02" \
83
- -i " pandas.Series.cat.set_categories PR01,PR02" \
84
- -i " pandas.Series.dt.as_unit PR01,PR02" \
85
- -i " pandas.Series.dt.ceil PR01,PR02" \
86
- -i " pandas.Series.dt.day_name PR01,PR02" \
87
- -i " pandas.Series.dt.floor PR01,PR02" \
88
76
-i " pandas.Series.dt.freq GL08" \
89
- -i " pandas.Series.dt.month_name PR01,PR02" \
90
- -i " pandas.Series.dt.normalize PR01" \
91
- -i " pandas.Series.dt.round PR01,PR02" \
92
- -i " pandas.Series.dt.strftime PR01,PR02" \
93
- -i " pandas.Series.dt.to_period PR01,PR02" \
94
- -i " pandas.Series.dt.total_seconds PR01" \
95
- -i " pandas.Series.dt.tz_convert PR01,PR02" \
96
- -i " pandas.Series.dt.tz_localize PR01,PR02" \
97
77
-i " pandas.Series.dt.unit GL08" \
98
78
-i " pandas.Series.pad PR01,SA01" \
99
- -i " pandas.Series.sparse.from_coo PR07,SA01" \
100
- -i " pandas.Series.sparse.npoints SA01" \
101
79
-i " pandas.Timedelta.max PR02" \
102
80
-i " pandas.Timedelta.min PR02" \
103
81
-i " pandas.Timedelta.resolution PR02" \
104
- -i " pandas.TimedeltaIndex.to_pytimedelta RT03,SA01" \
105
82
-i " pandas.Timestamp.max PR02" \
106
83
-i " pandas.Timestamp.min PR02" \
107
84
-i " pandas.Timestamp.nanosecond GL08" \
108
85
-i " pandas.Timestamp.resolution PR02" \
109
86
-i " pandas.Timestamp.tzinfo GL08" \
110
87
-i " pandas.Timestamp.year GL08" \
111
- -i " pandas.api.types.is_dict_like PR07,SA01" \
112
- -i " pandas.api.types.is_file_like PR07,SA01" \
113
- -i " pandas.api.types.is_float PR01,SA01" \
114
- -i " pandas.api.types.is_hashable PR01,RT03,SA01" \
115
- -i " pandas.api.types.is_integer PR01,SA01" \
116
- -i " pandas.api.types.is_iterator PR07,SA01" \
117
- -i " pandas.api.types.is_named_tuple PR07,SA01" \
118
- -i " pandas.api.types.is_re PR07,SA01" \
119
88
-i " pandas.api.types.is_re_compilable PR07,SA01" \
120
89
-i " pandas.api.types.pandas_dtype PR07,RT03,SA01" \
121
90
-i " pandas.arrays.ArrowExtensionArray PR07,SA01" \
122
- -i " pandas.arrays.DatetimeArray SA01" \
123
91
-i " pandas.arrays.IntegerArray SA01" \
124
92
-i " pandas.arrays.IntervalArray.left SA01" \
125
93
-i " pandas.arrays.IntervalArray.length SA01" \
126
94
-i " pandas.arrays.IntervalArray.right SA01" \
127
95
-i " pandas.arrays.NumpyExtensionArray SA01" \
128
96
-i " pandas.arrays.SparseArray PR07,SA01" \
129
97
-i " pandas.arrays.TimedeltaArray PR07,SA01" \
130
- -i " pandas.core.groupby.DataFrameGroupBy.__iter__ RT03,SA01" \
131
- -i " pandas.core.groupby.DataFrameGroupBy.agg RT03" \
132
- -i " pandas.core.groupby.DataFrameGroupBy.aggregate RT03" \
133
98
-i " pandas.core.groupby.DataFrameGroupBy.boxplot PR07,RT03,SA01" \
134
99
-i " pandas.core.groupby.DataFrameGroupBy.get_group RT03,SA01" \
135
100
-i " pandas.core.groupby.DataFrameGroupBy.groups SA01" \
136
101
-i " pandas.core.groupby.DataFrameGroupBy.indices SA01" \
137
102
-i " pandas.core.groupby.DataFrameGroupBy.nth PR02" \
138
103
-i " pandas.core.groupby.DataFrameGroupBy.nunique SA01" \
139
- -i " pandas.core.groupby.DataFrameGroupBy.ohlc SA01" \
140
104
-i " pandas.core.groupby.DataFrameGroupBy.plot PR02" \
141
105
-i " pandas.core.groupby.DataFrameGroupBy.sem SA01" \
142
- -i " pandas.core.groupby.SeriesGroupBy.__iter__ RT03,SA01" \
143
- -i " pandas.core.groupby.SeriesGroupBy.agg RT03" \
144
- -i " pandas.core.groupby.SeriesGroupBy.aggregate RT03" \
145
106
-i " pandas.core.groupby.SeriesGroupBy.get_group RT03,SA01" \
146
107
-i " pandas.core.groupby.SeriesGroupBy.groups SA01" \
147
108
-i " pandas.core.groupby.SeriesGroupBy.indices SA01" \
148
109
-i " pandas.core.groupby.SeriesGroupBy.is_monotonic_decreasing SA01" \
149
110
-i " pandas.core.groupby.SeriesGroupBy.is_monotonic_increasing SA01" \
150
111
-i " pandas.core.groupby.SeriesGroupBy.nth PR02" \
151
- -i " pandas.core.groupby.SeriesGroupBy.ohlc SA01" \
152
112
-i " pandas.core.groupby.SeriesGroupBy.plot PR02" \
153
113
-i " pandas.core.groupby.SeriesGroupBy.sem SA01" \
154
- -i " pandas.core.resample.Resampler.__iter__ RT03,SA01" \
155
114
-i " pandas.core.resample.Resampler.get_group RT03,SA01" \
156
115
-i " pandas.core.resample.Resampler.groups SA01" \
157
116
-i " pandas.core.resample.Resampler.indices SA01" \
158
117
-i " pandas.core.resample.Resampler.max PR01,RT03,SA01" \
159
118
-i " pandas.core.resample.Resampler.mean SA01" \
160
119
-i " pandas.core.resample.Resampler.min PR01,RT03,SA01" \
161
- -i " pandas.core.resample.Resampler.ohlc SA01" \
162
120
-i " pandas.core.resample.Resampler.prod SA01" \
163
121
-i " pandas.core.resample.Resampler.quantile PR01,PR07" \
164
122
-i " pandas.core.resample.Resampler.sem SA01" \
165
123
-i " pandas.core.resample.Resampler.std SA01" \
166
- -i " pandas.core.resample.Resampler.sum SA01" \
167
124
-i " pandas.core.resample.Resampler.transform PR01,RT03,SA01" \
168
125
-i " pandas.core.resample.Resampler.var SA01" \
169
126
-i " pandas.errors.AttributeConflictWarning SA01" \
170
- -i " pandas.errors.CSSWarning SA01" \
171
- -i " pandas.errors.CategoricalConversionWarning SA01" \
172
127
-i " pandas.errors.ChainedAssignmentError SA01" \
173
- -i " pandas.errors.ClosedFileError SA01" \
174
128
-i " pandas.errors.DataError SA01" \
175
129
-i " pandas.errors.DuplicateLabelError SA01" \
176
130
-i " pandas.errors.IntCastingNaNError SA01" \
177
131
-i " pandas.errors.InvalidIndexError SA01" \
178
- -i " pandas.errors.InvalidVersion SA01" \
179
132
-i " pandas.errors.NullFrequencyError SA01" \
180
133
-i " pandas.errors.NumExprClobberingError SA01" \
181
134
-i " pandas.errors.NumbaUtilError SA01" \
182
- -i " pandas.errors.OptionError SA01" \
183
- -i " pandas.errors.OutOfBoundsDatetime SA01" \
184
135
-i " pandas.errors.OutOfBoundsTimedelta SA01" \
185
136
-i " pandas.errors.PerformanceWarning SA01" \
186
137
-i " pandas.errors.PossibleDataLossError SA01" \
187
- -i " pandas.errors.PossiblePrecisionLoss SA01" \
188
- -i " pandas.errors.SpecificationError SA01" \
189
138
-i " pandas.errors.UndefinedVariableError PR01,SA01" \
190
139
-i " pandas.errors.UnsortedIndexError SA01" \
191
- -i " pandas.errors.UnsupportedFunctionCall SA01" \
192
140
-i " pandas.errors.ValueLabelTypeMismatch SA01" \
193
141
-i " pandas.infer_freq SA01" \
194
142
-i " pandas.io.json.build_table_schema PR07,RT03,SA01" \
195
- -i " pandas.io.stata.StataReader.data_label SA01" \
196
- -i " pandas.io.stata.StataReader.value_labels RT03,SA01" \
197
- -i " pandas.io.stata.StataReader.variable_labels RT03,SA01" \
198
143
-i " pandas.io.stata.StataWriter.write_file SA01" \
199
- -i " pandas.json_normalize RT03,SA01" \
200
- -i " pandas.period_range RT03,SA01" \
201
144
-i " pandas.plotting.andrews_curves RT03,SA01" \
202
- -i " pandas.plotting.lag_plot RT03,SA01" \
203
145
-i " pandas.plotting.scatter_matrix PR07,SA01" \
204
- -i " pandas.set_eng_float_format RT03,SA01" \
205
- -i " pandas.testing.assert_extension_array_equal SA01" \
206
146
-i " pandas.tseries.offsets.BDay PR02,SA01" \
207
147
-i " pandas.tseries.offsets.BQuarterBegin.is_on_offset GL08" \
208
148
-i " pandas.tseries.offsets.BQuarterBegin.n GL08" \
@@ -348,7 +288,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
348
288
-i " pandas.tseries.offsets.Second.is_on_offset GL08" \
349
289
-i " pandas.tseries.offsets.Second.n GL08" \
350
290
-i " pandas.tseries.offsets.Second.normalize GL08" \
351
- -i " pandas.tseries.offsets.SemiMonthBegin SA01" \
352
291
-i " pandas.tseries.offsets.SemiMonthBegin.day_of_month GL08" \
353
292
-i " pandas.tseries.offsets.SemiMonthBegin.is_on_offset GL08" \
354
293
-i " pandas.tseries.offsets.SemiMonthBegin.n GL08" \
0 commit comments