@@ -192,9 +192,9 @@ def test_pivot_table_categorical(self):
192
192
["c" , "d" , "c" , "d" ], categories = ["c" , "d" , "y" ], ordered = True
193
193
)
194
194
df = DataFrame ({"A" : cat1 , "B" : cat2 , "values" : [1 , 2 , 3 , 4 ]})
195
- msg = "The default value of observed=False is deprecated"
196
- with tm . assert_produces_warning ( FutureWarning , match = msg ):
197
- result = pivot_table ( df , values = "values" , index = [ "A" , "B" ], dropna = True )
195
+ result = pivot_table (
196
+ df , values = "values" , index = [ "A" , "B" ], dropna = True , observed = False
197
+ )
198
198
199
199
exp_index = MultiIndex .from_arrays ([cat1 , cat2 ], names = ["A" , "B" ])
200
200
expected = DataFrame ({"values" : [1.0 , 2.0 , 3.0 , 4.0 ]}, index = exp_index )
@@ -213,9 +213,9 @@ def test_pivot_table_dropna_categoricals(self, dropna):
213
213
)
214
214
215
215
df ["A" ] = df ["A" ].astype (CategoricalDtype (categories , ordered = False ))
216
- msg = "The default value of observed=False is deprecated"
217
- with tm . assert_produces_warning ( FutureWarning , match = msg ):
218
- result = df . pivot_table ( index = "B" , columns = "A" , values = "C" , dropna = dropna )
216
+ result = df . pivot_table (
217
+ index = "B" , columns = "A" , values = "C" , dropna = dropna , observed = False
218
+ )
219
219
expected_columns = Series (["a" , "b" , "c" ], name = "A" )
220
220
expected_columns = expected_columns .astype (
221
221
CategoricalDtype (categories , ordered = False )
@@ -245,9 +245,7 @@ def test_pivot_with_non_observable_dropna(self, dropna):
245
245
}
246
246
)
247
247
248
- msg = "The default value of observed=False is deprecated"
249
- with tm .assert_produces_warning (FutureWarning , match = msg ):
250
- result = df .pivot_table (index = "A" , values = "B" , dropna = dropna )
248
+ result = df .pivot_table (index = "A" , values = "B" , dropna = dropna , observed = False )
251
249
if dropna :
252
250
values = [2.0 , 3.0 ]
253
251
codes = [0 , 1 ]
@@ -278,9 +276,7 @@ def test_pivot_with_non_observable_dropna_multi_cat(self, dropna):
278
276
}
279
277
)
280
278
281
- msg = "The default value of observed=False is deprecated"
282
- with tm .assert_produces_warning (FutureWarning , match = msg ):
283
- result = df .pivot_table (index = "A" , values = "B" , dropna = dropna )
279
+ result = df .pivot_table (index = "A" , values = "B" , dropna = dropna , observed = False )
284
280
expected = DataFrame (
285
281
{"B" : [2.0 , 3.0 , 0.0 ]},
286
282
index = Index (
@@ -304,9 +300,7 @@ def test_pivot_with_interval_index(self, left_right, dropna, closed):
304
300
interval_values = Categorical (pd .IntervalIndex .from_arrays (left , right , closed ))
305
301
df = DataFrame ({"A" : interval_values , "B" : 1 })
306
302
307
- msg = "The default value of observed=False is deprecated"
308
- with tm .assert_produces_warning (FutureWarning , match = msg ):
309
- result = df .pivot_table (index = "A" , values = "B" , dropna = dropna )
303
+ result = df .pivot_table (index = "A" , values = "B" , dropna = dropna , observed = False )
310
304
expected = DataFrame (
311
305
{"B" : 1.0 }, index = Index (interval_values .unique (), name = "A" )
312
306
)
@@ -327,11 +321,15 @@ def test_pivot_with_interval_index_margins(self):
327
321
}
328
322
)
329
323
330
- msg = "The default value of observed=False is deprecated"
331
- with tm .assert_produces_warning (FutureWarning , match = msg ):
332
- pivot_tab = pivot_table (
333
- df , index = "C" , columns = "B" , values = "A" , aggfunc = "sum" , margins = True
334
- )
324
+ pivot_tab = pivot_table (
325
+ df ,
326
+ index = "C" ,
327
+ columns = "B" ,
328
+ values = "A" ,
329
+ aggfunc = "sum" ,
330
+ margins = True ,
331
+ observed = False ,
332
+ )
335
333
336
334
result = pivot_tab ["All" ]
337
335
expected = Series (
@@ -1830,9 +1828,9 @@ def test_categorical_margins_category(self, observed):
1830
1828
1831
1829
df .y = df .y .astype ("category" )
1832
1830
df .z = df .z .astype ("category" )
1833
- msg = "The default value of observed=False is deprecated"
1834
- with tm . assert_produces_warning ( FutureWarning , match = msg ):
1835
- table = df . pivot_table ( "x" , "y" , "z" , dropna = observed , margins = True )
1831
+ table = df . pivot_table (
1832
+ "x" , "y" , "z" , dropna = observed , margins = True , observed = False
1833
+ )
1836
1834
tm .assert_frame_equal (table , expected )
1837
1835
1838
1836
def test_margins_casted_to_float (self ):
@@ -1894,11 +1892,14 @@ def test_categorical_aggfunc(self, observed):
1894
1892
{"C1" : ["A" , "B" , "C" , "C" ], "C2" : ["a" , "a" , "b" , "b" ], "V" : [1 , 2 , 3 , 4 ]}
1895
1893
)
1896
1894
df ["C1" ] = df ["C1" ].astype ("category" )
1897
- msg = "The default value of observed=False is deprecated"
1898
- with tm .assert_produces_warning (FutureWarning , match = msg ):
1899
- result = df .pivot_table (
1900
- "V" , index = "C1" , columns = "C2" , dropna = observed , aggfunc = "count"
1901
- )
1895
+ result = df .pivot_table (
1896
+ "V" ,
1897
+ index = "C1" ,
1898
+ columns = "C2" ,
1899
+ dropna = observed ,
1900
+ aggfunc = "count" ,
1901
+ observed = False ,
1902
+ )
1902
1903
1903
1904
expected_index = pd .CategoricalIndex (
1904
1905
["A" , "B" , "C" ], categories = ["A" , "B" , "C" ], ordered = False , name = "C1"
0 commit comments