@@ -3837,7 +3837,8 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
38373837
38383838 com : float, optional
38393839 Specify decay in terms of center of mass.
3840- ``span``, ``halflife``, and ``alpha`` are alternative ways to specify decay.
3840+ ``span``, ``halflife``, and ``alpha`` are alternative ways to specify
3841+ decay.
38413842 span : float, optional
38423843 Specify decay in terms of span.
38433844 halflife : float, optional
@@ -3848,7 +3849,8 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
38483849 Minimum number of observations in the window required to have a value;
38493850 otherwise, result is ``np.nan``.
38503851 adjust : bool, default True
3851- Divide by decaying adjustment factor to account for imbalance in relative weights.
3852+ Divide by decaying adjustment factor to account for imbalance in
3853+ relative weights.
38523854 ignore_na : bool, default False
38533855 Ignore missing values when calculating weights.
38543856 times : str or array-like of datetime64, optional
@@ -3858,8 +3860,9 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
38583860
38593861 Returns
38603862 -------
3861- pandas.core.window.ExponentialMovingWindowGroupby
3862- An object that supports exponentially weighted moving transformations over each group.
3863+ pandas.api.typing.ExponentialMovingWindowGroupby
3864+ An object that supports exponentially weighted moving transformations over
3865+ each group.
38633866
38643867 See Also
38653868 --------
@@ -3885,7 +3888,7 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
38853888 4 B 50
38863889 5 B 60
38873890
3888- >>> df.groupby("Class").ewm(com=0.5).mean().reset_index(drop=True)
3891+ >>> df.groupby("Class").ewm(com=0.5).mean()
38893892 Value
38903893 0 10.000000
38913894 1 17.500000
0 commit comments