@@ -912,13 +912,13 @@ def tz_convert(self, tz) -> Self:
912912 DatetimeIndex(['2014-08-01 09:00:00+02:00',
913913 '2014-08-01 10:00:00+02:00',
914914 '2014-08-01 11:00:00+02:00'],
915- dtype='datetime64[ns , Europe/Berlin]', freq='h')
915+ dtype='datetime64[us , Europe/Berlin]', freq='h')
916916
917917 >>> dti.tz_convert(None)
918918 DatetimeIndex(['2014-08-01 07:00:00',
919919 '2014-08-01 08:00:00',
920920 '2014-08-01 09:00:00'],
921- dtype='datetime64[ns ]', freq='h')
921+ dtype='datetime64[us ]', freq='h')
922922 """ # noqa: E501
923923 tz = timezones .maybe_get_tz (tz )
924924
@@ -1009,7 +1009,7 @@ def tz_localize(
10091009 >>> tz_naive
10101010 DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
10111011 '2018-03-03 09:00:00'],
1012- dtype='datetime64[ns ]', freq='D')
1012+ dtype='datetime64[us ]', freq='D')
10131013
10141014 Localize DatetimeIndex in US/Eastern time zone:
10151015
@@ -1018,15 +1018,15 @@ def tz_localize(
10181018 DatetimeIndex(['2018-03-01 09:00:00-05:00',
10191019 '2018-03-02 09:00:00-05:00',
10201020 '2018-03-03 09:00:00-05:00'],
1021- dtype='datetime64[ns , US/Eastern]', freq=None)
1021+ dtype='datetime64[us , US/Eastern]', freq=None)
10221022
10231023 With the ``tz=None``, we can remove the time zone information
10241024 while keeping the local time (not converted to UTC):
10251025
10261026 >>> tz_aware.tz_localize(None)
10271027 DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
10281028 '2018-03-03 09:00:00'],
1029- dtype='datetime64[ns ]', freq=None)
1029+ dtype='datetime64[us ]', freq=None)
10301030
10311031 Be careful with DST changes. When there is sequential data, pandas can
10321032 infer the DST time:
@@ -1179,12 +1179,12 @@ def normalize(self) -> Self:
11791179 DatetimeIndex(['2014-08-01 10:00:00+05:30',
11801180 '2014-08-01 11:00:00+05:30',
11811181 '2014-08-01 12:00:00+05:30'],
1182- dtype='datetime64[ns , Asia/Calcutta]', freq='h')
1182+ dtype='datetime64[us , Asia/Calcutta]', freq='h')
11831183 >>> idx.normalize()
11841184 DatetimeIndex(['2014-08-01 00:00:00+05:30',
11851185 '2014-08-01 00:00:00+05:30',
11861186 '2014-08-01 00:00:00+05:30'],
1187- dtype='datetime64[ns , Asia/Calcutta]', freq=None)
1187+ dtype='datetime64[us , Asia/Calcutta]', freq=None)
11881188 """
11891189 new_values = normalize_i8_timestamps (self .asi8 , self .tz , reso = self ._creso )
11901190 dt64_values = new_values .view (self ._ndarray .dtype )
@@ -1308,7 +1308,7 @@ def month_name(self, locale=None) -> npt.NDArray[np.object_]:
13081308 0 2018-01-31
13091309 1 2018-02-28
13101310 2 2018-03-31
1311- dtype: datetime64[ns ]
1311+ dtype: datetime64[us ]
13121312 >>> s.dt.month_name()
13131313 0 January
13141314 1 February
@@ -1318,7 +1318,7 @@ def month_name(self, locale=None) -> npt.NDArray[np.object_]:
13181318 >>> idx = pd.date_range(start="2018-01", freq="ME", periods=3)
13191319 >>> idx
13201320 DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'],
1321- dtype='datetime64[ns ]', freq='ME')
1321+ dtype='datetime64[us ]', freq='ME')
13221322 >>> idx.month_name()
13231323 Index(['January', 'February', 'March'], dtype='str')
13241324
@@ -1329,7 +1329,7 @@ def month_name(self, locale=None) -> npt.NDArray[np.object_]:
13291329 >>> idx = pd.date_range(start="2018-01", freq="ME", periods=3)
13301330 >>> idx
13311331 DatetimeIndex(['2018-01-31', '2018-02-28', '2018-03-31'],
1332- dtype='datetime64[ns ]', freq='ME')
1332+ dtype='datetime64[us ]', freq='ME')
13331333 >>> idx.month_name(locale="pt_BR.utf8") # doctest: +SKIP
13341334 Index(['Janeiro', 'Fevereiro', 'Março'], dtype='str')
13351335 """
@@ -1376,7 +1376,7 @@ def day_name(self, locale=None) -> npt.NDArray[np.object_]:
13761376 0 2018-01-01
13771377 1 2018-01-02
13781378 2 2018-01-03
1379- dtype: datetime64[ns ]
1379+ dtype: datetime64[us ]
13801380 >>> s.dt.day_name()
13811381 0 Monday
13821382 1 Tuesday
@@ -1386,7 +1386,7 @@ def day_name(self, locale=None) -> npt.NDArray[np.object_]:
13861386 >>> idx = pd.date_range(start="2018-01-01", freq="D", periods=3)
13871387 >>> idx
13881388 DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'],
1389- dtype='datetime64[ns ]', freq='D')
1389+ dtype='datetime64[us ]', freq='D')
13901390 >>> idx.day_name()
13911391 Index(['Monday', 'Tuesday', 'Wednesday'], dtype='str')
13921392
@@ -1397,7 +1397,7 @@ def day_name(self, locale=None) -> npt.NDArray[np.object_]:
13971397 >>> idx = pd.date_range(start="2018-01-01", freq="D", periods=3)
13981398 >>> idx
13991399 DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03'],
1400- dtype='datetime64[ns ]', freq='D')
1400+ dtype='datetime64[us ]', freq='D')
14011401 >>> idx.day_name(locale="pt_BR.utf8") # doctest: +SKIP
14021402 Index(['Segunda', 'Terça', 'Quarta'], dtype='str')
14031403 """
@@ -1610,7 +1610,7 @@ def isocalendar(self) -> DataFrame:
16101610 0 2000-12-31
16111611 1 2001-12-31
16121612 2 2002-12-31
1613- dtype: datetime64[ns ]
1613+ dtype: datetime64[us ]
16141614 >>> datetime_series.dt.year
16151615 0 2000
16161616 1 2001
@@ -1638,7 +1638,7 @@ def isocalendar(self) -> DataFrame:
16381638 0 2000-01-31
16391639 1 2000-02-29
16401640 2 2000-03-31
1641- dtype: datetime64[ns ]
1641+ dtype: datetime64[us ]
16421642 >>> datetime_series.dt.month
16431643 0 1
16441644 1 2
@@ -1667,7 +1667,7 @@ def isocalendar(self) -> DataFrame:
16671667 0 2000-01-01
16681668 1 2000-01-02
16691669 2 2000-01-03
1670- dtype: datetime64[ns ]
1670+ dtype: datetime64[us ]
16711671 >>> datetime_series.dt.day
16721672 0 1
16731673 1 2
@@ -1696,7 +1696,7 @@ def isocalendar(self) -> DataFrame:
16961696 0 2000-01-01 00:00:00
16971697 1 2000-01-01 01:00:00
16981698 2 2000-01-01 02:00:00
1699- dtype: datetime64[ns ]
1699+ dtype: datetime64[us ]
17001700 >>> datetime_series.dt.hour
17011701 0 0
17021702 1 1
@@ -1724,7 +1724,7 @@ def isocalendar(self) -> DataFrame:
17241724 0 2000-01-01 00:00:00
17251725 1 2000-01-01 00:01:00
17261726 2 2000-01-01 00:02:00
1727- dtype: datetime64[ns ]
1727+ dtype: datetime64[us ]
17281728 >>> datetime_series.dt.minute
17291729 0 0
17301730 1 1
@@ -1753,7 +1753,7 @@ def isocalendar(self) -> DataFrame:
17531753 0 2000-01-01 00:00:00
17541754 1 2000-01-01 00:00:01
17551755 2 2000-01-01 00:00:02
1756- dtype: datetime64[ns ]
1756+ dtype: datetime64[us ]
17571757 >>> datetime_series.dt.second
17581758 0 0
17591759 1 1
@@ -1781,7 +1781,7 @@ def isocalendar(self) -> DataFrame:
17811781 0 2000-01-01 00:00:00.000000
17821782 1 2000-01-01 00:00:00.000001
17831783 2 2000-01-01 00:00:00.000002
1784- dtype: datetime64[ns ]
1784+ dtype: datetime64[us ]
17851785 >>> datetime_series.dt.microsecond
17861786 0 0
17871787 1 1
@@ -1809,7 +1809,7 @@ def isocalendar(self) -> DataFrame:
18091809 0 2000-01-01 00:00:00.000000000
18101810 1 2000-01-01 00:00:00.000000001
18111811 2 2000-01-01 00:00:00.000000002
1812- dtype: datetime64[ns ]
1812+ dtype: datetime64[us ]
18131813 >>> datetime_series.dt.nanosecond
18141814 0 0
18151815 1 1
@@ -1981,7 +1981,7 @@ def isocalendar(self) -> DataFrame:
19811981 0 2018-02-27
19821982 1 2018-02-28
19831983 2 2018-03-01
1984- dtype: datetime64[ns ]
1984+ dtype: datetime64[us ]
19851985 >>> s.dt.is_month_start
19861986 0 False
19871987 1 False
@@ -2043,7 +2043,7 @@ def isocalendar(self) -> DataFrame:
20432043 >>> idx = pd.date_range('2017-03-30', periods=4)
20442044 >>> idx
20452045 DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],
2046- dtype='datetime64[ns ]', freq='D')
2046+ dtype='datetime64[us ]', freq='D')
20472047
20482048 >>> idx.is_quarter_start
20492049 array([False, False, True, False])
@@ -2085,7 +2085,7 @@ def isocalendar(self) -> DataFrame:
20852085 >>> idx = pd.date_range('2017-03-30', periods=4)
20862086 >>> idx
20872087 DatetimeIndex(['2017-03-30', '2017-03-31', '2017-04-01', '2017-04-02'],
2088- dtype='datetime64[ns ]', freq='D')
2088+ dtype='datetime64[us ]', freq='D')
20892089
20902090 >>> idx.is_quarter_end
20912091 array([False, True, False, False])
@@ -2118,7 +2118,7 @@ def isocalendar(self) -> DataFrame:
21182118 0 2017-12-30
21192119 1 2017-12-31
21202120 2 2018-01-01
2121- dtype: datetime64[ns ]
2121+ dtype: datetime64[us ]
21222122
21232123 >>> dates.dt.is_year_start
21242124 0 False
@@ -2129,7 +2129,7 @@ def isocalendar(self) -> DataFrame:
21292129 >>> idx = pd.date_range("2017-12-30", periods=3)
21302130 >>> idx
21312131 DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],
2132- dtype='datetime64[ns ]', freq='D')
2132+ dtype='datetime64[us ]', freq='D')
21332133
21342134 >>> idx.is_year_start
21352135 array([False, False, True])
@@ -2143,7 +2143,7 @@ def isocalendar(self) -> DataFrame:
21432143 1 2022-01-03
21442144 2 2023-01-02
21452145 3 2024-01-01
2146- dtype: datetime64[ns ]
2146+ dtype: datetime64[us ]
21472147
21482148 >>> dates.dt.is_year_start
21492149 0 True
@@ -2155,7 +2155,7 @@ def isocalendar(self) -> DataFrame:
21552155 >>> idx = pd.date_range("2020-10-30", periods=4, freq="BYS")
21562156 >>> idx
21572157 DatetimeIndex(['2021-01-01', '2022-01-03', '2023-01-02', '2024-01-01'],
2158- dtype='datetime64[ns ]', freq='BYS-JAN')
2158+ dtype='datetime64[us ]', freq='BYS-JAN')
21592159
21602160 >>> idx.is_year_start
21612161 array([ True, True, True, True])
@@ -2188,7 +2188,7 @@ def isocalendar(self) -> DataFrame:
21882188 0 2017-12-30
21892189 1 2017-12-31
21902190 2 2018-01-01
2191- dtype: datetime64[ns ]
2191+ dtype: datetime64[us ]
21922192
21932193 >>> dates.dt.is_year_end
21942194 0 False
@@ -2199,7 +2199,7 @@ def isocalendar(self) -> DataFrame:
21992199 >>> idx = pd.date_range("2017-12-30", periods=3)
22002200 >>> idx
22012201 DatetimeIndex(['2017-12-30', '2017-12-31', '2018-01-01'],
2202- dtype='datetime64[ns ]', freq='D')
2202+ dtype='datetime64[us ]', freq='D')
22032203
22042204 >>> idx.is_year_end
22052205 array([False, True, False])
@@ -2236,7 +2236,7 @@ def isocalendar(self) -> DataFrame:
22362236 >>> idx = pd.date_range("2012-01-01", "2015-01-01", freq="YE")
22372237 >>> idx
22382238 DatetimeIndex(['2012-12-31', '2013-12-31', '2014-12-31'],
2239- dtype='datetime64[ns ]', freq='YE-DEC')
2239+ dtype='datetime64[us ]', freq='YE-DEC')
22402240 >>> idx.is_leap_year
22412241 array([ True, False, False])
22422242
@@ -2245,7 +2245,7 @@ def isocalendar(self) -> DataFrame:
22452245 0 2012-12-31
22462246 1 2013-12-31
22472247 2 2014-12-31
2248- dtype: datetime64[ns ]
2248+ dtype: datetime64[us ]
22492249 >>> dates_series.dt.is_leap_year
22502250 0 True
22512251 1 False
@@ -2379,7 +2379,7 @@ def std(
23792379 >>> idx = pd.date_range("2001-01-01 00:00", periods=3)
23802380 >>> idx
23812381 DatetimeIndex(['2001-01-01', '2001-01-02', '2001-01-03'],
2382- dtype='datetime64[ns ]', freq='D')
2382+ dtype='datetime64[us ]', freq='D')
23832383 >>> idx.std()
23842384 Timedelta('1 days 00:00:00')
23852385 """
0 commit comments