Skip to content

Commit a92650d

Browse files
committed
Debug
1 parent d984c1c commit a92650d

File tree

1 file changed

+0
-91
lines changed

1 file changed

+0
-91
lines changed

doc/source/whatsnew/v0.23.0.rst

Lines changed: 0 additions & 91 deletions
Original file line numberDiff line numberDiff line change
@@ -102,97 +102,6 @@ A ``DataFrame`` can now be written to and subsequently read back via JSON while
102102
103103
Please note that the string ``index`` is not supported with the round trip format, as it is used by default in ``write_json`` to indicate a missing index name.
104104

105-
.. ipython:: python
106-
:okwarning:
107-
108-
df.index.name = 'index'
109-
110-
df.to_json('test.json', orient='table')
111-
new_df = pd.read_json('test.json', orient='table')
112-
new_df
113-
new_df.dtypes
114-
115-
.. ipython:: python
116-
:suppress:
117-
118-
import os
119-
os.remove('test.json')
120-
121-
122-
.. _whatsnew_0230.enhancements.assign_dependent:
123-
124-
125-
Method ``.assign()`` accepts dependent arguments
126-
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
127-
128-
The :func:`DataFrame.assign` now accepts dependent keyword arguments for python version later than 3.6 (see also `PEP 468
129-
<https://www.python.org/dev/peps/pep-0468/>`_). Later keyword arguments may now refer to earlier ones if the argument is a callable. See the
130-
:ref:`documentation here <dsintro.chained_assignment>` (:issue:`14207`)
131-
132-
.. ipython:: python
133-
134-
df = pd.DataFrame({'A': [1, 2, 3]})
135-
df
136-
df.assign(B=df.A, C=lambda x: x['A'] + x['B'])
137-
138-
.. warning::
139-
140-
This may subtly change the behavior of your code when you're
141-
using ``.assign()`` to update an existing column. Previously, callables
142-
referring to other variables being updated would get the "old" values
143-
144-
Previous behavior:
145-
146-
.. code-block:: ipython
147-
148-
In [2]: df = pd.DataFrame({"A": [1, 2, 3]})
149-
150-
In [3]: df.assign(A=lambda df: df.A + 1, C=lambda df: df.A * -1)
151-
Out[3]:
152-
A C
153-
0 2 -1
154-
1 3 -2
155-
2 4 -3
156-
157-
New behavior:
158-
159-
.. ipython:: python
160-
161-
df.assign(A=df.A + 1, C=lambda df: df.A * -1)
162-
163-
164-
165-
.. _whatsnew_0230.enhancements.merge_on_columns_and_levels:
166-
167-
Merging on a combination of columns and index levels
168-
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
169-
170-
Strings passed to :meth:`DataFrame.merge` as the ``on``, ``left_on``, and ``right_on``
171-
parameters may now refer to either column names or index level names.
172-
This enables merging ``DataFrame`` instances on a combination of index levels
173-
and columns without resetting indexes. See the :ref:`Merge on columns and
174-
levels <merging.merge_on_columns_and_levels>` documentation section.
175-
(:issue:`14355`)
176-
177-
.. ipython:: python
178-
179-
left_index = pd.Index(['K0', 'K0', 'K1', 'K2'], name='key1')
180-
181-
left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
182-
'B': ['B0', 'B1', 'B2', 'B3'],
183-
'key2': ['K0', 'K1', 'K0', 'K1']},
184-
index=left_index)
185-
186-
right_index = pd.Index(['K0', 'K1', 'K2', 'K2'], name='key1')
187-
188-
right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
189-
'D': ['D0', 'D1', 'D2', 'D3'],
190-
'key2': ['K0', 'K0', 'K0', 'K1']},
191-
index=right_index)
192-
193-
left.merge(right, on=['key1', 'key2'])
194-
195-
.. _whatsnew_0230.enhancements.sort_by_columns_and_levels:
196105

197106
.. _whatsnew_0.23.0.contributors:
198107

0 commit comments

Comments
 (0)