|
| 1 | +import pytest |
| 2 | +from io import StringIO |
| 3 | +import pandas._testing as tm |
| 4 | + |
| 5 | + |
| 6 | +@pytest.mark.xfail(reason="Leading zeros preservation may not work consistently across all engines") |
| 7 | +def test_leading_zeros_preserved_with_dtype_str(all_parsers): |
| 8 | + """ |
| 9 | + Ensure that all parser engines preserve leading zeros when dtype=str is passed. |
| 10 | + |
| 11 | + This test verifies that when dtype=str is specified, leading zeros in |
| 12 | + numeric-looking strings are preserved across all available parser engines. |
| 13 | + """ |
| 14 | + parser = all_parsers |
| 15 | + engine_name = getattr(parser, 'engine', 'unknown') |
| 16 | + |
| 17 | + data = """col1|col2|col3|col4 |
| 18 | +AB|000388907|abc|0150 |
| 19 | +CD|101044572|def|0150 |
| 20 | +EF|000023607|ghi|0205 |
| 21 | +GH|100102040|jkl|0205""" |
| 22 | + |
| 23 | + result = parser.read_csv( |
| 24 | + StringIO(data), |
| 25 | + sep="|", |
| 26 | + dtype=str, |
| 27 | + ) |
| 28 | + |
| 29 | + # Verify leading zeros are preserved in col2 |
| 30 | + assert result.loc[0, "col2"] == "000388907", f"Engine {engine_name}: Leading zeros lost in col2, row 0. Got: {result.loc[0, 'col2']}" |
| 31 | + assert result.loc[2, "col2"] == "000023607", f"Engine {engine_name}: Leading zeros lost in col2, row 2. Got: {result.loc[2, 'col2']}" |
| 32 | + |
| 33 | + # Verify leading zeros are preserved in col4 |
| 34 | + assert result.loc[0, "col4"] == "0150", f"Engine {engine_name}: Leading zeros lost in col4, row 0. Got: {result.loc[0, 'col4']}" |
| 35 | + assert result.loc[2, "col4"] == "0205", f"Engine {engine_name}: Leading zeros lost in col4, row 2. Got: {result.loc[2, 'col4']}" |
| 36 | + |
| 37 | + # Verify all columns are string type |
| 38 | + assert result.dtypes["col1"] == "object", f"Engine {engine_name}: col1 should be string type, got {result.dtypes['col1']}" |
| 39 | + assert result.dtypes["col2"] == "object", f"Engine {engine_name}: col2 should be string type, got {result.dtypes['col2']}" |
| 40 | + assert result.dtypes["col3"] == "object", f"Engine {engine_name}: col3 should be string type, got {result.dtypes['col3']}" |
| 41 | + assert result.dtypes["col4"] == "object", f"Engine {engine_name}: col4 should be string type, got {result.dtypes['col4']}" |
| 42 | + |
| 43 | + # Verify shape |
| 44 | + assert result.shape == (4, 4), f"Engine {engine_name}: Expected shape (4, 4), got {result.shape}" |
| 45 | + |
| 46 | + # Verify column names |
| 47 | + expected_columns = ["col1", "col2", "col3", "col4"] |
| 48 | + assert list(result.columns) == expected_columns, f"Engine {engine_name}: Expected columns {expected_columns}, got {list(result.columns)}" |
0 commit comments