@@ -170,7 +170,7 @@ def test_sort_values_multicolumn_uint64(self):
170
170
"a" : pd .Series ([18446637057563306014 , 1162265347240853609 ]),
171
171
"b" : pd .Series ([1 , 2 ]),
172
172
},
173
- index = pd . Index ([ 1 , 0 ] ),
173
+ index = range ( 1 , - 1 , - 1 ),
174
174
)
175
175
176
176
tm .assert_frame_equal (result , expected )
@@ -360,7 +360,7 @@ def test_sort_values_nat_values_in_int_column(self):
360
360
df_reversed = DataFrame (
361
361
{"int" : int_values [::- 1 ], "float" : float_values [::- 1 ]},
362
362
columns = ["int" , "float" ],
363
- index = [ 1 , 0 ] ,
363
+ index = range ( 1 , - 1 , - 1 ) ,
364
364
)
365
365
366
366
# NaT is not a "na" for int64 columns, so na_position must not
@@ -385,7 +385,7 @@ def test_sort_values_nat_values_in_int_column(self):
385
385
df_reversed = DataFrame (
386
386
{"datetime" : [NaT , Timestamp ("2016-01-01" )], "float" : float_values [::- 1 ]},
387
387
columns = ["datetime" , "float" ],
388
- index = [ 1 , 0 ] ,
388
+ index = range ( 1 , - 1 , - 1 ) ,
389
389
)
390
390
391
391
df_sorted = df .sort_values (["datetime" , "float" ], na_position = "first" )
@@ -540,19 +540,19 @@ def test_sort_values_na_position_with_categories_raises(self):
540
540
@pytest .mark .parametrize (
541
541
"original_dict, sorted_dict, ignore_index, output_index" ,
542
542
[
543
- ({"A" : [1 , 2 , 3 ]}, {"A" : [3 , 2 , 1 ]}, True , [ 0 , 1 , 2 ] ),
544
- ({"A" : [1 , 2 , 3 ]}, {"A" : [3 , 2 , 1 ]}, False , [ 2 , 1 , 0 ] ),
543
+ ({"A" : [1 , 2 , 3 ]}, {"A" : [3 , 2 , 1 ]}, True , range ( 3 ) ),
544
+ ({"A" : [1 , 2 , 3 ]}, {"A" : [3 , 2 , 1 ]}, False , range ( 2 , - 1 , - 1 ) ),
545
545
(
546
546
{"A" : [1 , 2 , 3 ], "B" : [2 , 3 , 4 ]},
547
547
{"A" : [3 , 2 , 1 ], "B" : [4 , 3 , 2 ]},
548
548
True ,
549
- [ 0 , 1 , 2 ] ,
549
+ range ( 3 ) ,
550
550
),
551
551
(
552
552
{"A" : [1 , 2 , 3 ], "B" : [2 , 3 , 4 ]},
553
553
{"A" : [3 , 2 , 1 ], "B" : [4 , 3 , 2 ]},
554
554
False ,
555
- [ 2 , 1 , 0 ] ,
555
+ range ( 2 , - 1 , - 1 ) ,
556
556
),
557
557
],
558
558
)
0 commit comments