Skip to content

Commit bd36fa5

Browse files
committed
Adjust more tests
1 parent 21502e7 commit bd36fa5

File tree

3 files changed

+25
-19
lines changed

3 files changed

+25
-19
lines changed

pandas/tests/frame/test_constructors.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -851,10 +851,10 @@ def create_data(constructor):
851851

852852
expected = DataFrame(
853853
[
854-
{0: 0, 1: None, 2: None, 3: None},
855-
{0: None, 1: 2, 2: None, 3: None},
856-
{0: None, 1: None, 2: 4, 3: None},
857-
{0: None, 1: None, 2: None, 3: 6},
854+
[0, None, None, None],
855+
[None, 2, None, None],
856+
[None, None, 4, None],
857+
[None, None, None, 6],
858858
],
859859
index=[Timestamp(dt) for dt in dates_as_str],
860860
)

pandas/tests/frame/test_stack_unstack.py

Lines changed: 17 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -714,13 +714,13 @@ def test_unstack_unused_levels(self):
714714
df = DataFrame([[1, 0]] * 3, index=idx)
715715

716716
result = df.unstack()
717-
exp_col = MultiIndex.from_product([[0, 1], ["A", "B", "C"]])
717+
exp_col = MultiIndex.from_product([range(2), ["A", "B", "C"]])
718718
expected = DataFrame([[1, 1, 1, 0, 0, 0]], index=["a"], columns=exp_col)
719719
tm.assert_frame_equal(result, expected)
720720
assert (result.columns.levels[1] == idx.levels[1]).all()
721721

722722
# Unused items on both levels
723-
levels = [[0, 1, 7], [0, 1, 2, 3]]
723+
levels = [range(3), range(4)]
724724
codes = [[0, 0, 1, 1], [0, 2, 0, 2]]
725725
idx = MultiIndex(levels, codes)
726726
block = np.arange(4).reshape(2, 2)
@@ -752,7 +752,7 @@ def test_unstack_unused_levels_mixed_with_nan(
752752
result = df.unstack(level=level)
753753
exp_data = np.zeros(18) * np.nan
754754
exp_data[idces] = data
755-
cols = MultiIndex.from_product([[0, 1], col_level])
755+
cols = MultiIndex.from_product([range(2), col_level])
756756
expected = DataFrame(exp_data.reshape(3, 6), index=idx_level, columns=cols)
757757
tm.assert_frame_equal(result, expected)
758758

@@ -1067,7 +1067,7 @@ def test_stack_datetime_column_multiIndex(self, future_stack):
10671067
with tm.assert_produces_warning(warn, match=msg):
10681068
result = df.stack(future_stack=future_stack)
10691069

1070-
eidx = MultiIndex.from_product([(0, 1, 2, 3), ("B",)])
1070+
eidx = MultiIndex.from_product([range(4), ("B",)])
10711071
ecols = MultiIndex.from_tuples([(t, "A")])
10721072
expected = DataFrame([1, 2, 3, 4], index=eidx, columns=ecols)
10731073
tm.assert_frame_equal(result, expected)
@@ -1150,7 +1150,7 @@ def test_stack_full_multiIndex(self, future_stack):
11501150
expected = DataFrame(
11511151
[[0, 2], [1, np.nan], [3, 5], [4, np.nan]],
11521152
index=MultiIndex(
1153-
levels=[[0, 1], ["u", "x", "y", "z"]],
1153+
levels=[range(2), ["u", "x", "y", "z"]],
11541154
codes=[[0, 0, 1, 1], [1, 3, 1, 3]],
11551155
names=[None, "Lower"],
11561156
),
@@ -1201,7 +1201,7 @@ def test_stack_multi_preserve_categorical_dtype(
12011201
s_cidx = pd.CategoricalIndex(labels, ordered=ordered)
12021202
expected_data = sorted(data) if future_stack else data
12031203
expected = Series(
1204-
expected_data, index=MultiIndex.from_product([[0], s_cidx, cidx2])
1204+
expected_data, index=MultiIndex.from_product([range(1), s_cidx, cidx2])
12051205
)
12061206

12071207
tm.assert_series_equal(result, expected)
@@ -1214,7 +1214,7 @@ def test_stack_preserve_categorical_dtype_values(self, future_stack):
12141214
cat = pd.Categorical(["a", "a", "b", "c"])
12151215
df = DataFrame({"A": cat, "B": cat})
12161216
result = df.stack(future_stack=future_stack)
1217-
index = MultiIndex.from_product([[0, 1, 2, 3], ["A", "B"]])
1217+
index = MultiIndex.from_product([range(4), ["A", "B"]])
12181218
expected = Series(
12191219
pd.Categorical(["a", "a", "a", "a", "b", "b", "c", "c"]), index=index
12201220
)
@@ -1299,7 +1299,7 @@ def test_unstack_mixed_extension_types(self, level):
12991299
@pytest.mark.parametrize("level", [0, "baz"])
13001300
def test_unstack_swaplevel_sortlevel(self, level):
13011301
# GH 20994
1302-
mi = MultiIndex.from_product([[0], ["d", "c"]], names=["bar", "baz"])
1302+
mi = MultiIndex.from_product([range(1), ["d", "c"]], names=["bar", "baz"])
13031303
df = DataFrame([[0, 2], [1, 3]], index=mi, columns=["B", "A"])
13041304
df.columns.name = "foo"
13051305

@@ -1325,7 +1325,9 @@ def test_unstack_sort_false(frame_or_series, dtype):
13251325
result = obj.unstack(level=-1, sort=False)
13261326

13271327
if frame_or_series is DataFrame:
1328-
expected_columns = MultiIndex.from_tuples([(0, "b"), (0, "a")])
1328+
expected_columns = MultiIndex(
1329+
levels=[range(1), ["b", "a"]], codes=[[0, 0], [0, 1]]
1330+
)
13291331
else:
13301332
expected_columns = ["b", "a"]
13311333
expected = DataFrame(
@@ -1341,7 +1343,9 @@ def test_unstack_sort_false(frame_or_series, dtype):
13411343
result = obj.unstack(level=[1, 2], sort=False)
13421344

13431345
if frame_or_series is DataFrame:
1344-
expected_columns = MultiIndex.from_tuples([(0, "z", "b"), (0, "y", "a")])
1346+
expected_columns = MultiIndex(
1347+
levels=[range(1), ["z", "y"], ["b", "a"]], codes=[[0, 0], [0, 1], [0, 1]]
1348+
)
13451349
else:
13461350
expected_columns = MultiIndex.from_tuples([("z", "b"), ("y", "a")])
13471351
expected = DataFrame(
@@ -1496,7 +1500,9 @@ def test_stack_positional_level_duplicate_column_names(future_stack):
14961500
result = df.stack(0, future_stack=future_stack)
14971501

14981502
new_columns = Index(["y", "z"], name="a")
1499-
new_index = MultiIndex.from_tuples([(0, "x"), (0, "y")], names=[None, "a"])
1503+
new_index = MultiIndex(
1504+
levels=[range(1), ["x", "y"]], codes=[[0, 0], [0, 1]], names=[None, "a"]
1505+
)
15001506
expected = DataFrame([[1, 1], [1, 1]], index=new_index, columns=new_columns)
15011507

15021508
tm.assert_frame_equal(result, expected)

pandas/tests/indexing/test_loc.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1974,7 +1974,7 @@ def test_loc_setitem_empty_series(self):
19741974
# partially set with an empty object series
19751975
ser = Series(dtype=object)
19761976
ser.loc[1] = 1
1977-
tm.assert_series_equal(ser, Series([1], index=[1]))
1977+
tm.assert_series_equal(ser, Series([1], index=range(1, 2)))
19781978
ser.loc[3] = 3
19791979
tm.assert_series_equal(ser, Series([1, 3], index=[1, 3]))
19801980

@@ -1984,7 +1984,7 @@ def test_loc_setitem_empty_series_float(self):
19841984
# partially set with an empty object series
19851985
ser = Series(dtype=object)
19861986
ser.loc[1] = 1.0
1987-
tm.assert_series_equal(ser, Series([1.0], index=[1]))
1987+
tm.assert_series_equal(ser, Series([1.0], index=range(1, 2)))
19881988
ser.loc[3] = 3.0
19891989
tm.assert_series_equal(ser, Series([1.0, 3.0], index=[1, 3]))
19901990

@@ -2107,7 +2107,7 @@ def test_loc_setitem_with_expansion_nonunique_index(self, index):
21072107
N = len(index)
21082108
arr = np.arange(N).astype(np.int64)
21092109

2110-
orig = DataFrame(arr, index=index, columns=[0])
2110+
orig = DataFrame(arr, index=index)
21112111

21122112
# key that will requiring object-dtype casting in the index
21132113
key = "kapow"
@@ -2120,7 +2120,7 @@ def test_loc_setitem_with_expansion_nonunique_index(self, index):
21202120
else:
21212121
assert exp_index[-1] == key
21222122
exp_data = np.arange(N + 1).astype(np.float64)
2123-
expected = DataFrame(exp_data, index=exp_index, columns=[0])
2123+
expected = DataFrame(exp_data, index=exp_index)
21242124

21252125
# Add new row, but no new columns
21262126
df = orig.copy()

0 commit comments

Comments
 (0)