Skip to content

Commit bd46491

Browse files
authored
Merge branch 'pandas-dev:main' into series-sum-attrs
2 parents c162bba + e557039 commit bd46491

File tree

144 files changed

+951
-538
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

144 files changed

+951
-538
lines changed

.pre-commit-config.yaml

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ ci:
1919
skip: [pyright, mypy]
2020
repos:
2121
- repo: https://github.com/astral-sh/ruff-pre-commit
22-
rev: v0.8.6
22+
rev: v0.9.4
2323
hooks:
2424
- id: ruff
2525
args: [--exit-non-zero-on-fix]
@@ -41,7 +41,7 @@ repos:
4141
pass_filenames: true
4242
require_serial: false
4343
- repo: https://github.com/codespell-project/codespell
44-
rev: v2.3.0
44+
rev: v2.4.1
4545
hooks:
4646
- id: codespell
4747
types_or: [python, rst, markdown, cython, c]
@@ -70,7 +70,7 @@ repos:
7070
- id: trailing-whitespace
7171
args: [--markdown-linebreak-ext=md]
7272
- repo: https://github.com/PyCQA/isort
73-
rev: 5.13.2
73+
rev: 6.0.0
7474
hooks:
7575
- id: isort
7676
- repo: https://github.com/asottile/pyupgrade
@@ -95,14 +95,14 @@ repos:
9595
- id: sphinx-lint
9696
args: ["--enable", "all", "--disable", "line-too-long"]
9797
- repo: https://github.com/pre-commit/mirrors-clang-format
98-
rev: v19.1.6
98+
rev: v19.1.7
9999
hooks:
100100
- id: clang-format
101101
files: ^pandas/_libs/src|^pandas/_libs/include
102102
args: [-i]
103103
types_or: [c, c++]
104104
- repo: https://github.com/trim21/pre-commit-mirror-meson
105-
rev: v1.6.1
105+
rev: v1.7.0
106106
hooks:
107107
- id: meson-fmt
108108
args: ['--inplace']

asv_bench/benchmarks/io/style.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,8 +13,8 @@ class Render:
1313
def setup(self, cols, rows):
1414
self.df = DataFrame(
1515
np.random.randn(rows, cols),
16-
columns=[f"float_{i+1}" for i in range(cols)],
17-
index=[f"row_{i+1}" for i in range(rows)],
16+
columns=[f"float_{i + 1}" for i in range(cols)],
17+
index=[f"row_{i + 1}" for i in range(rows)],
1818
)
1919

2020
def time_apply_render(self, cols, rows):

doc/make.py

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -260,8 +260,7 @@ def latex(self, force=False):
260260
for i in range(3):
261261
self._run_os("pdflatex", "-interaction=nonstopmode", "pandas.tex")
262262
raise SystemExit(
263-
"You should check the file "
264-
'"build/latex/pandas.pdf" for problems.'
263+
'You should check the file "build/latex/pandas.pdf" for problems.'
265264
)
266265
self._run_os("make")
267266
return ret_code
@@ -343,8 +342,7 @@ def main():
343342
dest="verbosity",
344343
default=0,
345344
help=(
346-
"increase verbosity (can be repeated), "
347-
"passed to the sphinx build command"
345+
"increase verbosity (can be repeated), passed to the sphinx build command"
348346
),
349347
)
350348
argparser.add_argument(

doc/source/user_guide/cookbook.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -874,7 +874,7 @@ Timeseries
874874
<https://stackoverflow.com/questions/13893227/vectorized-look-up-of-values-in-pandas-dataframe>`__
875875

876876
`Aggregation and plotting time series
877-
<https://nipunbatra.github.io/blog/visualisation/2013/05/01/aggregation-timeseries.html>`__
877+
<https://nipunbatra.github.io/blog/posts/2013-05-01-aggregation-timeseries.html>`__
878878

879879
Turn a matrix with hours in columns and days in rows into a continuous row sequence in the form of a time series.
880880
`How to rearrange a Python pandas DataFrame?
@@ -1043,7 +1043,7 @@ CSV
10431043

10441044
The :ref:`CSV <io.read_csv_table>` docs
10451045

1046-
`read_csv in action <https://wesmckinney.com/blog/update-on-upcoming-pandas-v0-10-new-file-parser-other-performance-wins/>`__
1046+
`read_csv in action <https://www.datacamp.com/tutorial/pandas-read-csv>`__
10471047

10481048
`appending to a csv
10491049
<https://stackoverflow.com/questions/17134942/pandas-dataframe-output-end-of-csv>`__

doc/source/user_guide/enhancingperf.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -427,7 +427,7 @@ prefer that Numba throw an error if it cannot compile a function in a way that
427427
speeds up your code, pass Numba the argument
428428
``nopython=True`` (e.g. ``@jit(nopython=True)``). For more on
429429
troubleshooting Numba modes, see the `Numba troubleshooting page
430-
<https://numba.pydata.org/numba-doc/latest/user/troubleshoot.html#the-compiled-code-is-too-slow>`__.
430+
<https://numba.readthedocs.io/en/stable/user/troubleshoot.html>`__.
431431

432432
Using ``parallel=True`` (e.g. ``@jit(parallel=True)``) may result in a ``SIGABRT`` if the threading layer leads to unsafe
433433
behavior. You can first `specify a safe threading layer <https://numba.readthedocs.io/en/stable/user/threading-layer.html#selecting-a-threading-layer-for-safe-parallel-execution>`__

doc/source/user_guide/groupby.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -418,7 +418,7 @@ You can also include the grouping columns if you want to operate on them.
418418
419419
.. note::
420420

421-
The ``groupby`` operation in Pandas drops the ``name`` field of the columns Index object
421+
The ``groupby`` operation in pandas drops the ``name`` field of the columns Index object
422422
after the operation. This change ensures consistency in syntax between different
423423
column selection methods within groupby operations.
424424

doc/source/user_guide/io.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -990,7 +990,7 @@ Thousand separators
990990

991991
For large numbers that have been written with a thousands separator, you can
992992
set the ``thousands`` keyword to a string of length 1 so that integers will be parsed
993-
correctly:
993+
correctly.
994994

995995
By default, numbers with a thousands separator will be parsed as strings:
996996

doc/source/user_guide/merging.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -586,7 +586,7 @@ A string argument to ``indicator`` will use the value as the name for the indica
586586
Overlapping value columns
587587
~~~~~~~~~~~~~~~~~~~~~~~~~
588588

589-
The merge ``suffixes`` argument takes a tuple of list of strings to append to
589+
The merge ``suffixes`` argument takes a tuple or list of strings to append to
590590
overlapping column names in the input :class:`DataFrame` to disambiguate the result
591591
columns:
592592

@@ -979,7 +979,7 @@ nearest key rather than equal keys. For each row in the ``left`` :class:`DataFra
979979
the last row in the ``right`` :class:`DataFrame` are selected where the ``on`` key is less
980980
than the left's key. Both :class:`DataFrame` must be sorted by the key.
981981

982-
Optionally an :func:`merge_asof` can perform a group-wise merge by matching the
982+
Optionally :func:`merge_asof` can perform a group-wise merge by matching the
983983
``by`` key in addition to the nearest match on the ``on`` key.
984984

985985
.. ipython:: python

doc/source/user_guide/pyarrow.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ Data Structure Integration
2222

2323
A :class:`Series`, :class:`Index`, or the columns of a :class:`DataFrame` can be directly backed by a :external+pyarrow:py:class:`pyarrow.ChunkedArray`
2424
which is similar to a NumPy array. To construct these from the main pandas data structures, you can pass in a string of the type followed by
25-
``[pyarrow]``, e.g. ``"int64[pyarrow]""`` into the ``dtype`` parameter
25+
``[pyarrow]``, e.g. ``"int64[pyarrow]"`` into the ``dtype`` parameter
2626

2727
.. ipython:: python
2828

doc/source/user_guide/scale.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Scaling to large datasets
55
*************************
66

77
pandas provides data structures for in-memory analytics, which makes using pandas
8-
to analyze datasets that are larger than memory datasets somewhat tricky. Even datasets
8+
to analyze datasets that are larger than memory somewhat tricky. Even datasets
99
that are a sizable fraction of memory become unwieldy, as some pandas operations need
1010
to make intermediate copies.
1111

0 commit comments

Comments
 (0)