9292 common_dtype_categorical_compat ,
9393 find_result_type ,
9494 infer_dtype_from ,
95+ maybe_unbox_numpy_scalar ,
9596 np_can_hold_element ,
9697)
9798from pandas .core .dtypes .common import (
@@ -7534,7 +7535,7 @@ def min(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs)
75347535 # quick check
75357536 first = self [0 ]
75367537 if not isna (first ):
7537- return first
7538+ return maybe_unbox_numpy_scalar ( first )
75387539
75397540 if not self ._is_multi and self .hasnans :
75407541 # Take advantage of cache
@@ -7545,7 +7546,7 @@ def min(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs)
75457546 if not self ._is_multi and not isinstance (self ._values , np .ndarray ):
75467547 return self ._values ._reduce (name = "min" , skipna = skipna )
75477548
7548- return nanops .nanmin (self ._values , skipna = skipna )
7549+ return maybe_unbox_numpy_scalar ( nanops .nanmin (self ._values , skipna = skipna ) )
75497550
75507551 def max (self , axis : AxisInt | None = None , skipna : bool = True , * args , ** kwargs ):
75517552 """
@@ -7598,18 +7599,18 @@ def max(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs)
75987599 # quick check
75997600 last = self [- 1 ]
76007601 if not isna (last ):
7601- return last
7602+ return maybe_unbox_numpy_scalar ( last )
76027603
76037604 if not self ._is_multi and self .hasnans :
76047605 # Take advantage of cache
76057606 mask = self ._isnan
76067607 if not skipna or mask .all ():
7607- return self ._na_value
7608+ return maybe_unbox_numpy_scalar ( self ._na_value )
76087609
76097610 if not self ._is_multi and not isinstance (self ._values , np .ndarray ):
76107611 return self ._values ._reduce (name = "max" , skipna = skipna )
76117612
7612- return nanops .nanmax (self ._values , skipna = skipna )
7613+ return maybe_unbox_numpy_scalar ( nanops .nanmax (self ._values , skipna = skipna ) )
76137614
76147615 # --------------------------------------------------------------------
76157616
0 commit comments