3
3
{{ header }}
4
4
5
5
**************************************
6
- Introduction to User Defined Functions
6
+ Introduction to User- Defined Functions
7
7
**************************************
8
8
9
- In pandas, User Defined Functions (UDFs) provide a way to extend the library’s
9
+ In pandas, User- Defined Functions (UDFs) provide a way to extend the library’s
10
10
functionality by allowing users to apply custom computations to their data. While
11
11
pandas comes with a set of built-in functions for data manipulation, UDFs offer
12
12
flexibility when built-in methods are not sufficient. These functions can be
13
13
applied at different levels: element-wise, row-wise, column-wise, or group-wise,
14
14
depending on the method used.
15
15
16
- Note: User Defined Functions will be abbreviated to UDFs throughout this guide.
16
+ .. .. note::
17
+
18
+ .. User-Defined Functions will be abbreviated to UDFs throughout this guide.
17
19
18
- Why Use UDFs ?
19
- -------------
20
+ Why Use User-Defined Functions ?
21
+ -------------------------------
20
22
21
23
Pandas is designed for high-performance data processing, but sometimes your specific
22
24
needs go beyond standard aggregation, transformation, or filtering. UDFs allow you to:
23
- * Customize Computations: Implement logic tailored to your dataset, such as complex
25
+
26
+ * **Customize Computations **: Implement logic tailored to your dataset, such as complex
24
27
transformations, domain-specific calculations, or conditional modifications.
25
- * Improve Code Readability: Encapsulate logic into functions rather than writing long,
28
+ * ** Improve Code Readability ** : Encapsulate logic into functions rather than writing long,
26
29
complex expressions.
27
- * Handle Complex Grouped Operations: Perform operations on grouped data that standard
30
+ * ** Handle Complex Grouped Operations ** : Perform operations on grouped data that standard
28
31
methods do not support.
29
- * Extend pandas' Functionality: Apply external libraries or advanced calculations that
32
+ * ** Extend pandas' Functionality ** : Apply external libraries or advanced calculations that
30
33
are not natively available.
31
34
32
35
33
- Where Can UDFs Be Used?
34
- -----------------------
36
+ What functions support User-Defined Functions
37
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
35
38
36
- UDFs can be applied across various pandas methods that work with both Series and DataFrames:
39
+ UDFs can be applied across various pandas methods that work with Series and DataFrames:
37
40
38
41
* :meth: `DataFrame.apply ` - A flexible method that allows applying a function to Series,
39
42
DataFrames, or groups of data.
@@ -48,4 +51,110 @@ UDFs can be applied across various pandas methods that work with both Series and
48
51
Series in a clean, readable manner.
49
52
50
53
Each of these methods can be used with both Series and DataFrame objects, providing versatile
51
- ways to apply user-defined functions across different pandas data structures.
54
+ ways to apply user-defined functions across different pandas data structures.
55
+
56
+
57
+ :meth: `DataFrame.apply `
58
+ -----------------------
59
+
60
+ The :meth: `DataFrame.apply ` allows applying a user-defined functions along either axis (rows or columns):
61
+
62
+ .. ipython :: python
63
+
64
+ import pandas as pd
65
+
66
+ # Sample DataFrame
67
+ df = pd.DataFrame({' A' : [1 , 2 , 3 ], ' B' : [4 , 5 , 6 ]})
68
+
69
+ # User-Defined Function
70
+ def add_one (x ):
71
+ return x + 1
72
+
73
+ # Apply function
74
+ df_transformed = df.apply(add_one)
75
+ print (df_transformed)
76
+
77
+ # This works with lambda functions too
78
+ df_lambda = df.apply(lambda x : x + 1 )
79
+ print (df_lambda)
80
+
81
+
82
+ :meth: `DataFrame.apply ` also accepts dictionaries of multiple user-defined functions:
83
+
84
+ .. ipython :: python
85
+
86
+ import pandas as pd
87
+
88
+ # Sample DataFrame
89
+ df = pd.DataFrame({' A' : [1 , 2 , 3 ], ' B' : [1 , 2 , 3 ]})
90
+
91
+ # User-Defined Function
92
+ def add_one (x ):
93
+ return x + 1
94
+
95
+ def add_two (x ):
96
+ return x + 2
97
+
98
+ # Apply function
99
+ df_transformed = df.apply({" A" : add_one, " B" : add_two})
100
+ print (df_transformed)
101
+
102
+ # This works with lambda functions too
103
+ df_lambda = df.apply({" A" : lambda x : x + 1 , " B" : lambda x : x + 2 })
104
+ print (df_lambda)
105
+
106
+ :meth: `DataFrame.apply ` works with Series objects as well:
107
+
108
+ .. ipython :: python
109
+
110
+ import pandas as pd
111
+
112
+ # Sample Series
113
+ s = pd.Series([1 , 2 , 3 ])
114
+
115
+ # User-Defined Function
116
+ def add_one (x ):
117
+ return x + 1
118
+
119
+ # Apply function
120
+ s_transformed = s.apply(add_one)
121
+ print (df_transformed)
122
+
123
+ # This works with lambda functions too
124
+ s_lambda = s.apply(lambda x : x + 1 )
125
+ print (s_lambda)
126
+
127
+ :meth: `DataFrame.agg `
128
+ ---------------------
129
+
130
+ When working with grouped data, user-defined functions can be used within :meth: `DataFrame.agg `:
131
+
132
+ .. ipython :: python
133
+
134
+ # Sample DataFrame
135
+ df = pd.DataFrame({
136
+ ' Category' : [' A' , ' A' , ' B' , ' B' ],
137
+ ' Values' : [10 , 20 , 30 , 40 ]
138
+ })
139
+
140
+ # Define a function for group operations
141
+ def group_mean (group ):
142
+ return group.mean()
143
+
144
+ # Apply UDF to each group
145
+ grouped_result = df.groupby(' Category' )[' Values' ].agg(group_mean)
146
+ print (grouped_result)
147
+
148
+ Performance Considerations
149
+ --------------------------
150
+
151
+ While UDFs provide flexibility, their use is currently discouraged as they can introduce performance issues, especially when
152
+ written in pure Python. To improve efficiency:
153
+
154
+ * Use **vectorized operations ** (`NumPy ` or `pandas ` built-ins) when possible.
155
+ * Leverage **Cython or Numba ** to speed up computations.
156
+ * Consider using **pandas' built-in methods ** instead of UDFs for common operations.
157
+
158
+ .. note ::
159
+ If performance is critical, explore **pandas' vectorized functions ** before resorting
160
+ to UDFs.
0 commit comments