Skip to content

Commit d20bcc7

Browse files
committed
trim trailing whitespace
1 parent b6b7b02 commit d20bcc7

File tree

1 file changed

+13
-13
lines changed

1 file changed

+13
-13
lines changed

doc/source/user_guide/user_defined_functions.rst

Lines changed: 13 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ Introduction to User-Defined Functions
99
In pandas, User-Defined Functions (UDFs) provide a way to extend the library’s
1010
functionality by allowing users to apply custom computations to their data. While
1111
pandas comes with a set of built-in functions for data manipulation, UDFs offer
12-
flexibility when built-in methods are not sufficient. These functions can be
12+
flexibility when built-in methods are not sufficient. These functions can be
1313
applied at different levels: element-wise, row-wise, column-wise, or group-wise,
1414
and change the data differently, depending on the method used.
1515

@@ -19,13 +19,13 @@ Why Use User-Defined Functions?
1919
Pandas is designed for high-performance data processing, but sometimes your specific
2020
needs go beyond standard aggregation, transformation, or filtering. User-defined functions allow you to:
2121

22-
* **Customize Computations**: Implement logic tailored to your dataset, such as complex
22+
* **Customize Computations**: Implement logic tailored to your dataset, such as complex
2323
transformations, domain-specific calculations, or conditional modifications.
2424
* **Improve Code Readability**: Encapsulate logic into functions rather than writing long,
2525
complex expressions.
2626
* **Handle Complex Grouped Operations**: Perform operations on grouped data that standard
2727
methods do not support.
28-
* **Extend pandas' Functionality**: Apply external libraries or advanced calculations that
28+
* **Extend pandas' Functionality**: Apply external libraries or advanced calculations that
2929
are not natively available.
3030

3131

@@ -58,14 +58,14 @@ The :meth:`DataFrame.apply` allows applying a user-defined functions along eithe
5858
.. ipython:: python
5959
6060
import pandas as pd
61-
61+
6262
# Sample DataFrame
6363
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
64-
64+
6565
# User-Defined Function
6666
def add_one(x):
6767
return x + 1
68-
68+
6969
# Apply function
7070
df_applied = df.apply(add_one)
7171
print(df_applied)
@@ -81,14 +81,14 @@ The :meth:`DataFrame.apply` allows applying a user-defined functions along eithe
8181
8282
# Sample DataFrame
8383
df = pd.DataFrame({'A': [1, 2, 3], 'B': [1, 2, 3]})
84-
84+
8585
# User-Defined Function
8686
def add_one(x):
8787
return x + 1
8888
8989
def add_two(x):
9090
return x + 2
91-
91+
9292
# Apply function
9393
df_applied = df.apply({"A": add_one, "B": add_two})
9494
print(df_applied)
@@ -103,11 +103,11 @@ The :meth:`DataFrame.apply` allows applying a user-defined functions along eithe
103103
104104
# Sample Series
105105
s = pd.Series([1, 2, 3])
106-
106+
107107
# User-Defined Function
108108
def add_one(x):
109109
return x + 1
110-
110+
111111
# Apply function
112112
s_applied = s.apply(add_one)
113113
print(s_applied)
@@ -128,11 +128,11 @@ The :meth:`DataFrame.agg` allows aggregation with a user-defined function along
128128
'Category': ['A', 'A', 'B', 'B'],
129129
'Values': [10, 20, 30, 40]
130130
})
131-
131+
132132
# Define a function for group operations
133133
def group_mean(group):
134134
return group.mean()
135-
135+
136136
# Apply UDF to each group
137137
grouped_result = df.groupby('Category')['Values'].agg(group_mean)
138138
print(grouped_result)
@@ -149,7 +149,7 @@ transformations and custom row-wise or element-wise operations.
149149
The :meth:`DataFrame.transform` allows transforms a Dataframe, Series or Grouped object
150150
while preserving the original shape of the object.
151151

152-
.. ipython:: python
152+
.. ipython:: python
153153
154154
# Sample DataFrame
155155
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

0 commit comments

Comments
 (0)