Skip to content

Commit e3d7b64

Browse files
update docstrings
1 parent 991c986 commit e3d7b64

File tree

8 files changed

+27
-27
lines changed

8 files changed

+27
-27
lines changed

pandas/core/algorithms.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -355,7 +355,7 @@ def unique(values):
355355
array([2, 1])
356356
357357
>>> pd.unique(pd.Series([pd.Timestamp("20160101"), pd.Timestamp("20160101")]))
358-
array(['2016-01-01T00:00:00'], dtype='datetime64[s]')
358+
array(['2016-01-01T00:00:00.000000'], dtype='datetime64[us]')
359359
360360
>>> pd.unique(
361361
... pd.Series(

pandas/core/arrays/datetimelike.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1906,11 +1906,11 @@ def strftime(self, date_format: str) -> npt.NDArray[np.object_]:
19061906
19071907
>>> rng_tz.floor("2h", ambiguous=False)
19081908
DatetimeIndex(['2021-10-31 02:00:00+01:00'],
1909-
dtype='datetime64[s, Europe/Amsterdam]', freq=None)
1909+
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
19101910
19111911
>>> rng_tz.floor("2h", ambiguous=True)
19121912
DatetimeIndex(['2021-10-31 02:00:00+02:00'],
1913-
dtype='datetime64[s, Europe/Amsterdam]', freq=None)
1913+
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
19141914
"""
19151915

19161916
_floor_example = """>>> rng.floor('h')
@@ -1933,11 +1933,11 @@ def strftime(self, date_format: str) -> npt.NDArray[np.object_]:
19331933
19341934
>>> rng_tz.floor("2h", ambiguous=False)
19351935
DatetimeIndex(['2021-10-31 02:00:00+01:00'],
1936-
dtype='datetime64[s, Europe/Amsterdam]', freq=None)
1936+
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
19371937
19381938
>>> rng_tz.floor("2h", ambiguous=True)
19391939
DatetimeIndex(['2021-10-31 02:00:00+02:00'],
1940-
dtype='datetime64[s, Europe/Amsterdam]', freq=None)
1940+
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
19411941
"""
19421942

19431943
_ceil_example = """>>> rng.ceil('h')
@@ -1960,11 +1960,11 @@ def strftime(self, date_format: str) -> npt.NDArray[np.object_]:
19601960
19611961
>>> rng_tz.ceil("h", ambiguous=False)
19621962
DatetimeIndex(['2021-10-31 02:00:00+01:00'],
1963-
dtype='datetime64[s, Europe/Amsterdam]', freq=None)
1963+
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
19641964
19651965
>>> rng_tz.ceil("h", ambiguous=True)
19661966
DatetimeIndex(['2021-10-31 02:00:00+02:00'],
1967-
dtype='datetime64[s, Europe/Amsterdam]', freq=None)
1967+
dtype='datetime64[us, Europe/Amsterdam]', freq=None)
19681968
"""
19691969

19701970

pandas/core/arrays/datetimes.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ class DatetimeArray(dtl.TimelikeOps, dtl.DatelikeOps): # type: ignore[misc]
220220
... )
221221
<DatetimeArray>
222222
['2023-01-01 00:00:00', '2023-01-02 00:00:00']
223-
Length: 2, dtype: datetime64[s]
223+
Length: 2, dtype: datetime64[us]
224224
"""
225225

226226
_typ = "datetimearray"
@@ -614,7 +614,7 @@ def tz(self) -> tzinfo | None:
614614
>>> s
615615
0 2020-01-01 10:00:00+00:00
616616
1 2020-02-01 11:00:00+00:00
617-
dtype: datetime64[s, UTC]
617+
dtype: datetime64[us, UTC]
618618
>>> s.dt.tz
619619
datetime.timezone.utc
620620
@@ -1044,7 +1044,7 @@ def tz_localize(
10441044
4 2018-10-28 02:30:00+01:00
10451045
5 2018-10-28 03:00:00+01:00
10461046
6 2018-10-28 03:30:00+01:00
1047-
dtype: datetime64[s, CET]
1047+
dtype: datetime64[us, CET]
10481048
10491049
In some cases, inferring the DST is impossible. In such cases, you can
10501050
pass an ndarray to the ambiguous parameter to set the DST explicitly
@@ -1056,7 +1056,7 @@ def tz_localize(
10561056
0 2018-10-28 01:20:00+02:00
10571057
1 2018-10-28 02:36:00+02:00
10581058
2 2018-10-28 03:46:00+01:00
1059-
dtype: datetime64[s, CET]
1059+
dtype: datetime64[us, CET]
10601060
10611061
If the DST transition causes nonexistent times, you can shift these
10621062
dates forward or backwards with a timedelta object or `'shift_forward'`
@@ -1439,7 +1439,7 @@ def time(self) -> npt.NDArray[np.object_]:
14391439
>>> s
14401440
0 2020-01-01 10:00:00+00:00
14411441
1 2020-02-01 11:00:00+00:00
1442-
dtype: datetime64[s, UTC]
1442+
dtype: datetime64[us, UTC]
14431443
>>> s.dt.time
14441444
0 10:00:00
14451445
1 11:00:00
@@ -1482,7 +1482,7 @@ def timetz(self) -> npt.NDArray[np.object_]:
14821482
>>> s
14831483
0 2020-01-01 10:00:00+00:00
14841484
1 2020-02-01 11:00:00+00:00
1485-
dtype: datetime64[s, UTC]
1485+
dtype: datetime64[us, UTC]
14861486
>>> s.dt.timetz
14871487
0 10:00:00+00:00
14881488
1 11:00:00+00:00
@@ -1524,7 +1524,7 @@ def date(self) -> npt.NDArray[np.object_]:
15241524
>>> s
15251525
0 2020-01-01 10:00:00+00:00
15261526
1 2020-02-01 11:00:00+00:00
1527-
dtype: datetime64[s, UTC]
1527+
dtype: datetime64[us, UTC]
15281528
>>> s.dt.date
15291529
0 2020-01-01
15301530
1 2020-02-01
@@ -1873,7 +1873,7 @@ def isocalendar(self) -> DataFrame:
18731873
>>> s
18741874
0 2020-01-01 10:00:00+00:00
18751875
1 2020-02-01 11:00:00+00:00
1876-
dtype: datetime64[s, UTC]
1876+
dtype: datetime64[us, UTC]
18771877
>>> s.dt.dayofyear
18781878
0 1
18791879
1 32
@@ -1909,7 +1909,7 @@ def isocalendar(self) -> DataFrame:
19091909
>>> s
19101910
0 2020-01-01 10:00:00+00:00
19111911
1 2020-04-01 11:00:00+00:00
1912-
dtype: datetime64[s, UTC]
1912+
dtype: datetime64[us, UTC]
19131913
>>> s.dt.quarter
19141914
0 1
19151915
1 2
@@ -1945,7 +1945,7 @@ def isocalendar(self) -> DataFrame:
19451945
>>> s
19461946
0 2020-01-01 10:00:00+00:00
19471947
1 2020-02-01 11:00:00+00:00
1948-
dtype: datetime64[s, UTC]
1948+
dtype: datetime64[us, UTC]
19491949
>>> s.dt.daysinmonth
19501950
0 31
19511951
1 29

pandas/core/base.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1376,7 +1376,7 @@ def factorize(
13761376
0 2000-03-11
13771377
1 2000-03-12
13781378
2 2000-03-13
1379-
dtype: datetime64[s]
1379+
dtype: datetime64[us]
13801380
13811381
>>> ser.searchsorted('3/14/2000')
13821382
np.int64(3)

pandas/core/dtypes/missing.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -150,7 +150,7 @@ def isna(obj: object) -> bool | npt.NDArray[np.bool_] | NDFrame:
150150
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None, "2017-07-08"])
151151
>>> index
152152
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
153-
dtype='datetime64[s]', freq=None)
153+
dtype='datetime64[us]', freq=None)
154154
>>> pd.isna(index)
155155
array([False, False, True, False])
156156

pandas/core/generic.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -6299,8 +6299,8 @@ def dtypes(self):
62996299
>>> df.dtypes
63006300
float float64
63016301
int int64
6302-
datetime datetime64[s]
6303-
string str
6302+
datetime datetime64[us]
6303+
string str
63046304
dtype: object
63056305
"""
63066306
data = self._mgr.get_dtypes()

pandas/core/indexes/datetimes.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -246,7 +246,7 @@ class DatetimeIndex(DatetimeTimedeltaMixin):
246246
>>> idx = pd.DatetimeIndex(["1/1/2020 10:00:00+00:00", "2/1/2020 11:00:00+00:00"])
247247
>>> idx
248248
DatetimeIndex(['2020-01-01 10:00:00+00:00', '2020-02-01 11:00:00+00:00'],
249-
dtype='datetime64[s, UTC]', freq=None)
249+
dtype='datetime64[us, UTC]', freq=None)
250250
"""
251251

252252
_typ = "datetimeindex"

pandas/core/tools/datetimes.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -878,7 +878,7 @@ def to_datetime(
878878
>>> pd.to_datetime(df)
879879
0 2015-02-04
880880
1 2016-03-05
881-
dtype: datetime64[s]
881+
dtype: datetime64[us]
882882
883883
Using a unix epoch time
884884
@@ -921,14 +921,14 @@ def to_datetime(
921921
922922
>>> pd.to_datetime(["2018-10-26 12:00:00", "2018-10-26 13:00:15"])
923923
DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'],
924-
dtype='datetime64[s]', freq=None)
924+
dtype='datetime64[us]', freq=None)
925925
926926
- Timezone-aware inputs *with constant time offset* are converted to
927927
timezone-aware :class:`DatetimeIndex`:
928928
929929
>>> pd.to_datetime(["2018-10-26 12:00 -0500", "2018-10-26 13:00 -0500"])
930930
DatetimeIndex(['2018-10-26 12:00:00-05:00', '2018-10-26 13:00:00-05:00'],
931-
dtype='datetime64[s, UTC-05:00]', freq=None)
931+
dtype='datetime64[us, UTC-05:00]', freq=None)
932932
933933
- However, timezone-aware inputs *with mixed time offsets* (for example
934934
issued from a timezone with daylight savings, such as Europe/Paris)
@@ -970,14 +970,14 @@ def to_datetime(
970970
971971
>>> pd.to_datetime(["2018-10-26 12:00", "2018-10-26 13:00"], utc=True)
972972
DatetimeIndex(['2018-10-26 12:00:00+00:00', '2018-10-26 13:00:00+00:00'],
973-
dtype='datetime64[s, UTC]', freq=None)
973+
dtype='datetime64[us, UTC]', freq=None)
974974
975975
- Timezone-aware inputs are *converted* to UTC (the output represents the
976976
exact same datetime, but viewed from the UTC time offset `+00:00`).
977977
978978
>>> pd.to_datetime(["2018-10-26 12:00 -0530", "2018-10-26 12:00 -0500"], utc=True)
979979
DatetimeIndex(['2018-10-26 17:30:00+00:00', '2018-10-26 17:00:00+00:00'],
980-
dtype='datetime64[s, UTC]', freq=None)
980+
dtype='datetime64[us, UTC]', freq=None)
981981
982982
- Inputs can contain both string or datetime, the above
983983
rules still apply

0 commit comments

Comments
 (0)