@@ -152,7 +152,6 @@ class providing the base-class of operations.
152152 from pandas .core .indexers .objects import BaseIndexer
153153 from pandas .core .resample import Resampler
154154 from pandas .core .window import (
155- ExpandingGroupby ,
156155 ExponentialMovingWindowGroupby ,
157156 RollingGroupby ,
158157 )
@@ -3802,27 +3801,6 @@ def rolling(
38023801 _as_index = self .as_index ,
38033802 )
38043803
3805- @final
3806- @Substitution (name = "groupby" )
3807- @Appender (_common_see_also )
3808- def expanding (self , * args , ** kwargs ) -> ExpandingGroupby :
3809- """
3810- Return an expanding grouper, providing expanding
3811- functionality per group.
3812-
3813- Returns
3814- -------
3815- pandas.api.typing.ExpandingGroupby
3816- """
3817- from pandas .core .window import ExpandingGroupby
3818-
3819- return ExpandingGroupby (
3820- self ._selected_obj ,
3821- * args ,
3822- _grouper = self ._grouper ,
3823- ** kwargs ,
3824- )
3825-
38263804 @final
38273805 @Substitution (name = "groupby" )
38283806 @Appender (_common_see_also )
@@ -3832,53 +3810,41 @@ def ewm(self, *args, **kwargs) -> ExponentialMovingWindowGroupby:
38323810
38333811 Parameters
38343812 ----------
3835- com : float, optional
3836- Specify decay in terms of center of mass:
3837- :math:`\\ alpha = 1 / (1 + com)` for :math:`com \\ geq 0`.
3838- One and only one of ``com``, ``span``, ``halflife``, or ``alpha`` must
3839- be provided.
3840- span : float, optional
3841- Specify decay in terms of span:
3842- :math:`\\ alpha = 2 / (span + 1)` for :math:`span \\ geq 1`.
3843- One and only one of ``com``, ``span``, ``halflife``, or ``alpha`` must
3844- be provided.
3845- halflife : float, optional
3846- Specify decay in terms of half-life:
3847- :math:`\\ alpha = 1 - \\ exp(-\\ ln(2) / halflife)` for :math:`halflife > 0`.
3848- One and only one of ``com``, ``span``, ``halflife``, or ``alpha`` must
3849- be provided.
3850- alpha : float, optional
3851- Specify the smoothing factor :math:`\\ alpha` directly,
3852- where :math:`0 < \\ alpha \\ leq 1`.
3853- One and only one of ``com``, ``span``, ``halflife``, or ``alpha`` must
3854- be provided.
3855- min_periods : int, default 0
3856- Minimum number of observations in window required to have a value;
3857- otherwise, result is ``np.nan``.
3858- adjust : bool, default True
3859- Divide by decaying adjustment factor in beginning periods to account
3860- for imbalance in relative weightings (viewing EWMA as a moving average).
3861- ignore_na : bool, default False
3862- If ``True``, missing values are ignored in the calculation.
3863- If ``False``, missing values are treated as missing.
3864- axis : {0 or 'index', 1 or 'columns'}, default 0
3865- The axis to use. The value 0 identifies the rows, and 1 identifies the
3866- columns.
3867- *args, **kwargs
3868- Additional arguments and keyword arguments passed to the function.
3813+ *args
3814+ Arguments to be passed to
3815+ :meth:`~pandas.core.window.ExponentialMovingWindow`.
3816+ **kwargs
3817+ Keyword arguments to be passed to
3818+ :meth:`~pandas.core.window.ExponentialMovingWindow`.
3819+ These can include:
3820+ - com : float, optional
3821+ - span : float, optional
3822+ - halflife : float, optional
3823+ - alpha : float, optional
3824+ - min_periods : int, default 0
3825+ - adjust : bool, default True
3826+ - ignore_na : bool, default False
3827+ - axis : {0 or 'index', 1 or 'columns'}, default 0
38693828
38703829 Returns
38713830 -------
38723831 pandas.api.typing.ExponentialMovingWindowGroupby
38733832 Return a new grouper with exponential moving window capabilities.
38743833
3834+ See Also
3835+ --------
3836+ pandas.DataFrame.ewm : Exponential weighted function for DataFrame.
3837+ pandas.Series.ewm : Exponential weighted function for Series.
3838+
38753839 Notes
38763840 -----
38773841 Each group is treated independently, and the exponential weighted calculations
38783842 are applied separately to each group.
3843+
38793844 When ``adjust=True``, weighted averages are calculated using weights
38803845 :math:`w_i = (1-\\ alpha)^i` where :math:`i` is the number of periods from the
38813846 observations being weighted to the current period.
3847+
38823848 When ``adjust=False``, the calculation follows the recursive formula:
38833849 :math:`y_t = (1 - \\ alpha) y_{t-1} + \\ alpha x_t`.
38843850
0 commit comments