@@ -144,8 +144,7 @@ def _from_dataframe(df: DataFrameXchg, allow_copy: bool = True) -> pd.DataFrame:
144144 else :
145145 pandas_df = pd .concat (pandas_dfs , axis = 0 , ignore_index = True , copy = False )
146146
147- index_obj = df .metadata .get ("pandas.index" , None )
148- if index_obj is not None :
147+ if (index_obj := df .metadata .get ("pandas.index" , None )) is not None :
149148 pandas_df .index = index_obj
150149
151150 return pandas_df
@@ -372,8 +371,7 @@ def string_column_to_ndarray(col: Column) -> tuple[np.ndarray, Any]:
372371def parse_datetime_format_str (format_str , data ) -> pd .Series | np .ndarray :
373372 """Parse datetime `format_str` to interpret the `data`."""
374373 # timestamp 'ts{unit}:tz'
375- timestamp_meta = re .match (r"ts([smun]):(.*)" , format_str )
376- if timestamp_meta :
374+ if (timestamp_meta := re .match (r"ts([smun]):(.*)" , format_str )):
377375 unit , tz = timestamp_meta .group (1 ), timestamp_meta .group (2 )
378376 if unit != "s" :
379377 # the format string describes only a first letter of the unit, so
@@ -386,8 +384,7 @@ def parse_datetime_format_str(format_str, data) -> pd.Series | np.ndarray:
386384 return data
387385
388386 # date 'td{Days/Ms}'
389- date_meta = re .match (r"td([Dm])" , format_str )
390- if date_meta :
387+ if (date_meta := re .match (r"td([Dm])" , format_str )):
391388 unit = date_meta .group (1 )
392389 if unit == "D" :
393390 # NumPy doesn't support DAY unit, so converting days to seconds
0 commit comments