@@ -833,8 +833,8 @@ cdef class _Timestamp(ABCTimestamp):
833
833
See Also
834
834
--------
835
835
pandas.Timestamp.day_name : Returns the name of the day of the week.
836
- pandas.Timestamp.strftime : Returns a formatted string representation of the Timestamp.
837
- datetime.datetime.strftime : Returns a string representing the date and time , controlled by an explicit format string .
836
+ pandas.Timestamp.strftime : Returns a formatted string of the Timestamp.
837
+ datetime.datetime.strftime : Returns a string representing the date and time.
838
838
839
839
Examples
840
840
--------
@@ -928,7 +928,7 @@ cdef class _Timestamp(ABCTimestamp):
928
928
"""
929
929
Return the quarter of the year for the `Timestamp`.
930
930
931
- This property returns an integer representing the quarter of the year in
931
+ This property returns an integer representing the quarter of the year in
932
932
which the `Timestamp` falls. The quarters are defined as follows:
933
933
- Q1: January 1 to March 31
934
934
- Q2: April 1 to June 30
@@ -944,8 +944,8 @@ cdef class _Timestamp(ABCTimestamp):
944
944
--------
945
945
pandas.Timestamp.month : Returns the month of the `Timestamp`.
946
946
pandas.Timestamp.year : Returns the year of the `Timestamp`.
947
- pandas.Timestamp.is_quarter_end : Boolean property indicating if the `Timestamp` is at the end of a quarter.
948
- pandas.Timestamp.is_quarter_start : Boolean property indicating if the `Timestamp` is at the start of a quarter.
947
+ pandas.Timestamp.is_quarter_end : Returns if `Timestamp` is at the quarter' s end .
948
+ pandas.Timestamp.is_quarter_start : Indicates if `Timestamp` is at the quarter' s start .
949
949
950
950
Examples
951
951
--------
@@ -1025,9 +1025,9 @@ cdef class _Timestamp(ABCTimestamp):
1025
1025
1026
1026
See Also
1027
1027
--------
1028
- pandas.Timestamp.floor : Round down the `Timestamp` to the nearest specified frequency.
1029
- pandas.Timestamp.ceil : Round up the `Timestamp` to the nearest specified frequency.
1030
- pandas.Timestamp.round : Round the `Timestamp` to the nearest specified frequency.
1028
+ pandas.Timestamp.floor : Rounds `Timestamp` down to the nearest frequency.
1029
+ pandas.Timestamp.ceil : Rounds `Timestamp` up to the nearest frequency.
1030
+ pandas.Timestamp.round : Rounds `Timestamp` to the nearest frequency.
1031
1031
1032
1032
Examples
1033
1033
--------
@@ -1279,7 +1279,7 @@ cdef class _Timestamp(ABCTimestamp):
1279
1279
pandas.Timestamp.fromtimestamp : Construct a `Timestamp` from a POSIX timestamp.
1280
1280
datetime.datetime.timestamp : Equivalent method from the `datetime` module.
1281
1281
pandas.Timestamp.to_pydatetime : Convert the `Timestamp` to a `datetime` object .
1282
- pandas.Timestamp.to_datetime64 : Convert the `Timestamp` to a `numpy.datetime64` object .
1282
+ pandas.Timestamp.to_datetime64 : Converts `Timestamp` to `numpy.datetime64`.
1283
1283
1284
1284
Examples
1285
1285
--------
@@ -1370,10 +1370,10 @@ cdef class _Timestamp(ABCTimestamp):
1370
1370
Parameters
1371
1371
----------
1372
1372
dtype : dtype, optional
1373
- Data type of the output, ignored in this method as the return type
1373
+ Data type of the output, ignored in this method as the return type
1374
1374
is always `numpy.datetime64`.
1375
1375
copy : bool , default False
1376
- Whether to ensure that the returned value is a new object . This
1376
+ Whether to ensure that the returned value is a new object . This
1377
1377
parameter is also ignored as the method does not support copying.
1378
1378
1379
1379
Returns
@@ -1412,9 +1412,7 @@ cdef class _Timestamp(ABCTimestamp):
1412
1412
Parameters
1413
1413
----------
1414
1414
freq : str , optional
1415
- The frequency string representing the desired period (e.g., ' Y' for yearly,
1416
- ' M' for monthly, ' W' for weekly, etc.). If not provided, the default is `None `,
1417
- which will infer the frequency.
1415
+ Frequency string for the period (e.g., ' Y' , ' M' , ' W' ). Defaults to `None `.
1418
1416
1419
1417
See Also
1420
1418
--------
@@ -1649,7 +1647,7 @@ class Timestamp(_Timestamp):
1649
1647
See Also
1650
1648
--------
1651
1649
datetime.datetime.today : Returns the current local date.
1652
- pandas.Timestamp.now : Returns the current time with an option to specify timezone.
1650
+ pandas.Timestamp.now : Returns current time with optional timezone.
1653
1651
pandas.Timestamp : A class representing a specific timestamp.
1654
1652
1655
1653
Examples
@@ -1746,17 +1744,17 @@ class Timestamp(_Timestamp):
1746
1744
"""
1747
1745
Create a `Timestamp` object from a POSIX timestamp.
1748
1746
1749
- This method converts a POSIX timestamp (the number of seconds since
1750
- January 1 , 1970 , 00 :00 :00 UTC) into a `Timestamp` object . The resulting
1747
+ This method converts a POSIX timestamp (the number of seconds since
1748
+ January 1 , 1970 , 00 :00 :00 UTC) into a `Timestamp` object . The resulting
1751
1749
`Timestamp` can be localized to a specific time zone if provided.
1752
1750
1753
1751
Parameters
1754
1752
----------
1755
1753
ts : float
1756
- The POSIX timestamp to convert, representing seconds since
1754
+ The POSIX timestamp to convert, representing seconds since
1757
1755
the epoch (1970 - 01 - 01 00 :00 :00 UTC).
1758
- tz : str , zoneinfo.ZoneInfo, pytz.timezone, dateutil.tz.tzfile, or None , optional
1759
- Time zone for the `Timestamp`. If not provided, the `Timestamp` will
1756
+ tz : str , zoneinfo.ZoneInfo, pytz.timezone, dateutil.tz.tzfile, optional
1757
+ Time zone for the `Timestamp`. If not provided, the `Timestamp` will
1760
1758
be timezone- naive (i.e., without time zone information).
1761
1759
1762
1760
Returns
@@ -1768,7 +1766,7 @@ class Timestamp(_Timestamp):
1768
1766
--------
1769
1767
pandas.Timestamp : Represents a single timestamp, similar to `datetime`.
1770
1768
pandas.to_datetime : Converts various types of data to datetime.
1771
- datetime.datetime.fromtimestamp : Returns a datetime object from a POSIX timestamp.
1769
+ datetime.datetime.fromtimestamp : Returns a datetime from a POSIX timestamp.
1772
1770
1773
1771
Examples
1774
1772
--------
@@ -1866,7 +1864,7 @@ class Timestamp(_Timestamp):
1866
1864
1867
1865
def date(self):
1868
1866
"""
1869
- Return a `datetime.date` object with the same year, month, and day as the Timestamp .
1867
+ Returns `datetime.date` with the same year, month, and day.
1870
1868
1871
1869
This method extracts the date component from the `Timestamp` and returns
1872
1870
it as a `datetime.date` object , discarding the time information.
@@ -2064,13 +2062,13 @@ class Timestamp(_Timestamp):
2064
2062
2065
2063
This method converts the `Timestamp` into a time tuple , which is compatible
2066
2064
with functions like `time.localtime()`. The time tuple is a named tuple with
2067
- attributes such as year, month, day, hour, minute, second, weekday, day of the year,
2068
- and daylight savings indicator.
2065
+ attributes such as year, month, day, hour, minute, second, weekday,
2066
+ day of the year, and daylight savings indicator.
2069
2067
2070
2068
See Also
2071
2069
--------
2072
2070
time.localtime : Converts a POSIX timestamp into a time tuple .
2073
- pandas.Timestamp : The `Timestamp` object that represents a specific point in time.
2071
+ pandas.Timestamp : The `Timestamp` that represents a specific point in time.
2074
2072
datetime.datetime.timetuple : Equivalent method in the `datetime` module.
2075
2073
2076
2074
Examples
@@ -2119,7 +2117,7 @@ class Timestamp(_Timestamp):
2119
2117
See Also
2120
2118
--------
2121
2119
datetime.datetime.toordinal : Equivalent method in the `datetime` module.
2122
- pandas.Timestamp : The `Timestamp` object that represents a specific point in time.
2120
+ pandas.Timestamp : The `Timestamp` that represents a specific point in time.
2123
2121
pandas.Timestamp.fromordinal : Create a `Timestamp` from an ordinal.
2124
2122
2125
2123
Examples
0 commit comments