-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Code Sample, a copy-pastable example if possible
>>> import pandas as pd
>>> t0 = pd.Timestamp('2010-01-01')
>>> t1 = pd.Timestamp('2012-02-02')
>>> df = pd.DataFrame([1, 2, 3], index=pd.MultiIndex.from_tuples([(t0, 'A'), (t0, 'B'), (t1, 'A')]), columns=['C'])
>>> # Compare the following results:
>>> print(df.ix['2010-01-01'])
# C
# A 1
# B 2
>>> print(df.loc['2010-01-01'])
# C
# 2010-01-01 A 1
# B 2
>>> print(df.ix[t0])
# C
# A 1
# B 2
>>> print(df.loc[t0])
# C
# A 1
# B 2
Problem description
The result of df.loc['2010-01-01']
is different from that of df.ix['2010-01-01']
or df.loc[pd.Timestamp('2010-01-01')]
; it contains additional index level for date. (df.ix[]
returns the same data frame for date string and timestamp slicer.)
Expected Output
----
C
A 1
B 2
----
C
A 1
B 2
----
C
A 1
B 2
----
C
A 1
B 2
----
Output of pd.show_versions()
pandas: 0.19.2+0.g825876c.dirty
nose: 1.3.7
pip: 8.1.2
setuptools: 27.2.0
Cython: 0.24.1
numpy: 1.11.2
scipy: 0.18.1
statsmodels: 0.6.1
xarray: None
IPython: 5.1.0
sphinx: 1.4.6
patsy: 0.4.1
dateutil: 2.5.3
pytz: 2016.6.1
blosc: None
bottleneck: 1.1.0
tables: 3.2.3.1
numexpr: 2.6.1
matplotlib: 1.5.3
openpyxl: 2.3.2
xlrd: 1.0.0
xlwt: 1.1.2
xlsxwriter: 0.9.3
lxml: 3.6.4
bs4: 4.5.1
html5lib: None
httplib2: None
apiclient: None
sqlalchemy: 1.0.13
pymysql: None
psycopg2: None
jinja2: 2.8
boto: 2.42.0
pandas_datareader: None