-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
import pandas as pd
df = pd.DataFrame({'a': [0, 1]}, index=[pd.Timestamp('2002-12-30T20'), pd.Timestamp('2003-01-03T20')])
df['T 1.75 1/3'] = [1, 2]
Problem description
When using __setitem__
or __getitem__
with a str key on a pandas DataFrame where the index has ._supports_partial_string_indexing = True, pandas first tries to convert the str key to a slice using index._get_string_slice(key).
It seems to me that we have too loose of an interpretation of what one of these partial string slices looks like (or perhaps when / how one might use them).
In my use case I have some timeseries data for some US treasury bills, where the names are something like f"T {coupon} {date}", e.g. "T 1.75 1/3" and I want to assign a new column to a DataFrame with some data on this instrument.
However df['T 1.75 1/3'] = value
- as in the example above - raises "ValueError: cannot set using a slice indexer with a different length than the value"
Expected Output
A new column with label "T 1.75 1/3" and values [1, 2] is assigned to the pandas DataFrame df
.
Output of pd.show_versions()
INSTALLED VERSIONS
commit : f2c8480
python : 3.9.2.final.0
python-bits : 64
OS : Linux
OS-release : 4.19.128-microsoft-standard
Version : #1 SMP Tue Jun 23 12:58:10 UTC 2020
machine : x86_64
processor :
byteorder : little
LC_ALL : None
LANG : C.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.3
numpy : 1.20.1
pytz : 2021.1
dateutil : 2.8.1
pip : 21.0.1
setuptools : 53.0.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : None
IPython : 7.21.0
pandas_datareader: None
bs4 : None
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None