-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import numpy as np
import pandas as pd
df = pd.DataFrame(
np.random.random((5, 3)),
index=[1, 2, 2, 3, 4],
columns=pd.MultiIndex.from_product([np.arange(3), ["x"]]),
)
print(df)
"""
This works, but is arguably a bug.
It returns a Series of two values, but the contract of the
DataFrame.at, as I understand, is to return a single value
"""
print(df.at[2, 1])
print()
"""
This works and returns a scalar value as expected
"""
print(df.loc[1, (1, "x")])
print()
"""
Fails with
ValueError: Invalid call for scalar access (getting)!
"""
print(df.at[1, (1, "x")])
Issue Description
When a DataFrame has one axis with non-unique values, and one axis with a multi-index, the DataFrame.at method throws a confusing error.
Even if this is strictly expected, the error should be more clear (And maybe KeyError instead of ValueError)
It feels like a bug because
- Calling loc with the same parameters works and
- There is no ambiguity in the values passed
(there is only one row with index=1)
Traceback (most recent call last):
File "/Users/jonathan/Dropbox/py/debug_tests/pandas_mi_bug.py", line 33, in <module>
print(df.at[1, (1, "x")])
~~~~~^^^^^^^^^^^^^
File "/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/pandas/core/indexing.py", line 2485, in __getitem__
raise ValueError("Invalid call for scalar access (getting)!")
ValueError: Invalid call for scalar access (getting)!
Expected Behavior
In the example above,
print(df.at[1, (1, "x")])
Should return a single value at that location
If it should throw an Error, make it clear that the duplicates in the index is the problem (concat() does this)
Also note:
- If the index contains unique values, it will work as expected
- It the columns are not a MultiIndex, it will work as expected
In other words both axes need to have these properties for the bug to appear
Installed Versions
INSTALLED VERSIONS
commit : ba1cccd
python : 3.11.0.final.0
python-bits : 64
OS : Darwin
OS-release : 21.4.0
Version : Darwin Kernel Version 21.4.0: Fri Mar 18 00:46:32 PDT 2022; root:xnu-8020.101.4~15/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.1.0
numpy : 1.23.4
pytz : 2022.5
dateutil : 2.8.2
setuptools : 65.5.0
pip : 23.2.1
Cython : None
pytest : 7.2.0
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.12.0
pandas_datareader : None
bs4 : 4.12.2
bottleneck : None
dataframe-api-compat: None
fastparquet : None
fsspec : None
gcsfs : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.3
qtpy : None
pyqt5 : None