-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
df = pd.DataFrame(data = {"requirement" : [10, 20, 30], "cost" : [4.5, 5.5, np.nan], "allocation" : [0.1, 0.5, 0.4]})
# the default behavior of np.prod() returns nan when encountered
# the alternate function np.nanprod() considers nan as 1 and returns the value
df["total"] = df.apply(lambda x : np.prod(x), axis = 1)
Issue Description
The pandas
module overrides the default behavior of a numpy
function like np.prod()
with the internal default behavior of pd.prod()
instead.
Expected Behavior
The default behavior must be preserved as this creates a confusion when referring the documentation of numpy
vs the observed result.
Installed Versions
INSTALLED VERSIONS
commit : 2e218d1
python : 3.10.9.final.0
python-bits : 64
OS : Windows
OS-release : 10
Version : 10.0.19045
machine : AMD64
processor : Intel64 Family 6 Model 140 Stepping 2, GenuineIntel
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_India.1252
pandas : 1.5.3
numpy : 1.23.5
pytz : 2022.7
dateutil : 2.8.2
setuptools : 65.6.3
pip : 22.3.1
Cython : None
pytest : 7.1.2
hypothesis : None
sphinx : 5.0.2
blosc : None
feather : None
xlsxwriter : 3.1.2
lxml.etree : 4.9.1
html5lib : None
pymysql : 1.4.6
psycopg2 : None
jinja2 : 3.1.2
IPython : 8.10.0
pandas_datareader: None
bs4 : 4.11.1
bottleneck : 1.3.5
brotli :
fastparquet : None
fsspec : 2022.11.0
gcsfs : None
matplotlib : 3.7.0
numba : 0.56.4
numexpr : 2.8.4
odfpy : None
openpyxl : 3.0.10
pandas_gbq : None
pyarrow : 15.0.0
pyreadstat : None
pyxlsb : None
s3fs : None
scipy : 1.10.0
snappy :
sqlalchemy : 1.4.39
tables : 3.7.0
tabulate : 0.8.10
xarray : 2022.11.0
xlrd : 2.0.1
xlwt : None
zstandard : 0.19.0
tzdata : 2024.1