-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df = pd.DataFrame({'B': [0, 1, 2, None, 4]})
B
0 0.0
1 1.0
2 2.0
3 NaN
4 4.0
df.ewm(alpha=2/3, adjust=False, ignore_na=False).mean()
B
0 0.000000
1 0.666667
2 1.555556
3 1.555556
4 3.650794
Issue Description
According to the documentation, for adjust=False
the formula for the recursive mean should be:
y_t = (1-alpha)y_{t-1} + alpha x_t
And for ignore_na=False
the absolute positions should yield a factor of (1-alpha)^2
and alpha
, which does not give the same answer as the invocation above:
alpha = 2/3
yprev = 1.555556
xt = 4
(1-alpha)**2*yprev + alpha*xt
2.839506222222222
In contrast, ignore_na=True
does give the right value:
alpha = 2/3
yprev = 1.555556
xt = 4
(1-alpha)*yprev + alpha*xt
3.185185333333333
Expected Behavior
With ignore_na=False
, the correct value in index 4 should be 2.839506222222222
, not 3.650794
.
Installed Versions
INSTALLED VERSIONS
commit : bdc79c1
python : 3.11.5.final.0
python-bits : 64
OS : Darwin
OS-release : 23.4.0
Version : Darwin Kernel Version 23.4.0: Fri Mar 15 00:10:42 PDT 2024; root:xnu-10063.101.17~1/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.1
numpy : 1.26.4
pytz : 2024.1
dateutil : 2.8.2
setuptools : 68.2.2
pip : 23.3.1
Cython : 3.0.10
pytest : 7.4.0
hypothesis : None
sphinx : 5.0.2
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.9.3
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : 8.20.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.2
bottleneck : 1.3.7
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.10.0
gcsfs : None
matplotlib : 3.8.4
numba : 0.59.1
numexpr : 2.8.7
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : 2023.10.0
scipy : 1.13.0
sqlalchemy : 2.0.25
tables : 3.9.2
tabulate : 0.9.0
xarray : 2023.6.0
xlrd : 2.0.1
zstandard : 0.22.0
tzdata : 2023.3
qtpy : 2.4.1
pyqt5 : None