-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
df1 = pd.DataFrame(index=range(1), columns=['foo','bar'], dtype='Int64')
df2 = df1.copy()
# insert using a dict
df1.loc[0] = {'foo': 1729509695129311113}
# insert normally
df2.loc[0, 'foo'] = 1729509695129311113
assert df1.equals(df2), 'oops'
Issue Description
when trying to insert an int into a (nullable) Int64
column, depending on the method used, the integer is first coereced to a float64
and therefore loses some of its precision.
Expected Behavior
both methods should work without losing precsion, i.e., like df2
.
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.12.3
python-bits : 64
OS : Darwin
OS-release : 23.5.0
Version : Darwin Kernel Version 23.5.0: Wed May 1 20:12:58 PDT 2024; root:xnu-10063.121.3~5/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.0.2
pytz : 2024.2
dateutil : 2.9.0.post0
pip : 24.2
Cython : None
sphinx : None
IPython : 8.28.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : None
lxml.etree : None
matplotlib : None
numba : 0.60.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 17.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2024.2
qtpy : None
pyqt5 : None