-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
data = {
'0': pd.Series(
data=[0.000209, 0.000100],
index=pd.date_range("2024-11-07 16:00:00", periods=2, freq="8h", name="time").astype('datetime64[ms]'),
name="0"
).resample('8h').last(),
'1': pd.Series(
data=[0.001012, 0.000461],
index=pd.date_range("2023-11-22 16:00:00", periods=2, freq="8h", name="time").astype('datetime64[ms]'),
name="1"
).resample('8h').last(),
}
print(pd.DataFrame(data))
0 1
time
2023-11-22 16:00:00 NaN 0.001012
2024-11-07 16:00:00 0.000209 NaN
2936-07-12 00:00:00 NaN NaN
2937-06-28 00:00:00 NaN NaN
Issue Description
When creating a pd.DataFrame from two pd.Series with mismatched DatetimeIndex (after resample), the resulting DataFrame does not align the indices correctly. Instead, it includes unexpected datetime values.
Expected Behavior
0 1
time
2023-11-22 16:00:00 NaN 0.001012
2023-11-23 00:00:00 NaN 0.000461
2024-11-07 16:00:00 0.000209 NaN
2024-11-08 00:00:00 0.000100 NaN
Installed Versions
pandas : 2.2.3
numpy : 2.0.2
pytz : 2024.1
dateutil : 2.9.0.post0
pip : 24.0
Cython : None
sphinx : None
IPython : 8.27.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.4
lxml.etree : None
matplotlib : 3.9.2
numba : 0.60.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 17.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.14.1
sqlalchemy : None
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2024.1
qtpy : None
pyqt5 : None