-
-
Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
idx = pd.date_range("2025-01-29 01:36",periods=4,freq="1 min",unit="us")
ab = pd.DataFrame(index=idx,data=dict(a=[1,2,3,4],b=[2,2,2,2]))
cd = pd.DataFrame(index=idx[:3],data=dict(c=[9,8,7],d=[6,6,6]))
abcd = pd.concat([ab,cd],axis="columns")
print(abcd)
assert abcd.shape[0] == 4Issue Description
The above example attempts to concatenate a 4-row DataFrame with a 3-row DataFrame by joining on the index;
the first three index values match exactly. The expected result is a 4-row DataFrame as follows, that you can obtain with unit="ns":
a b c d
2025-01-29 01:36:00 1 2 9.0 6.0
2025-01-29 01:37:00 2 2 8.0 6.0
2025-01-29 01:38:00 3 2 7.0 6.0
2025-01-29 01:39:00 4 2 NaN NaN
Instead, with unit="us" the result is a 2-row DataFrame, where the first row is correct, and the second row is completely made up from outer space:
a b c d
2025-01-29 01:36:00 1.0 2.0 9.0 6.0
2025-01-29 18:16:00 NaN NaN NaN NaN
With unit="s", the result is similarly wrong, but with a different made-up row index:
a b c d
2025-01-29 01:36:00 1.0 2.0 9.0 6.0
3926-05-28 12:16:00 NaN NaN NaN NaN
Expected Behavior
The correct result is returned.
Installed Versions
I noticed the issue with the following versions: (latest python 3.13.2, latest pandas 2.2.3):
INSTALLED VERSIONS
commit : 0691c5c
python : 3.13.2
python-bits : 64
OS : Darwin
OS-release : 24.3.0
Version : Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:16 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_GB.UTF-8
LOCALE : None.UTF-8
pandas : 2.2.3
numpy : 2.1.3
pytz : 2025.1
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : None
sphinx : None
IPython : 8.32.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.5
lxml.etree : None
matplotlib : 3.10.0
numba : 0.61.0
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 19.0.0
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : 1.15.1
sqlalchemy : None
tables : None
tabulate : None
xarray : 2025.1.2
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.1
qtpy : None
pyqt5 : None
I also reproduced on python 3.11 with pandas 2.2.0