Skip to content

BUG: pivot_table drops rows and columns despite values being non-NaN #61113

@it176131

Description

@it176131

Pandas version checks

  • I have checked that this issue has not already been reported.

  • I have confirmed this bug exists on the latest version of pandas.

  • I have confirmed this bug exists on the main branch of pandas.

Reproducible Example

import numpy as np
import pandas as pd
import pandas._testing as tm


def test_pivot_table_index_and_column_with_nan() -> None:
    """Index and columns should exist if any non-null values.

    Input data
    ----------
        row  col  val
    0  NaN  0.0    0
    1  0.0  1.0    1
    2  1.0  2.0    2
    3  2.0  3.0    3
    4  3.0  NaN    4

    Expected output
    ---------------
    col  0.0  1.0  2.0  3.0  NaN
    row                         
    NaN  0.0  NaN  NaN  NaN  NaN
    0.0  NaN  1.0  NaN  NaN  NaN
    1.0  NaN  NaN  2.0  NaN  NaN
    2.0  NaN  NaN  NaN  3.0  NaN
    3.0  NaN  NaN  NaN  NaN  4.0
    """
    data = {
        "row": [None, *range(4)],
        "col": [*range(4), None],
        "val": range(5)
    }
    df = pd.DataFrame(data)
    actual = df.pivot_table(values="val", index="row", columns="col")
    e_index = [None, *range(4)]
    e_columns = [*range(4), None]
    e_data = np.zeros(shape=(5, 5))
    e_data.fill(np.NaN)
    np.fill_diagonal(a=e_data, val=range(5))
    expected = pd.DataFrame(
        data=e_data,
        index=pd.Index(data=e_index, name="row"),
        columns=pd.Index(data=e_columns, name="col")
    )
    tm.assert_frame_equal(left=actual, right=expected)  # fails

Issue Description

Rows and columns are unexpectedly dropped while creating a pivot table with a single NaN index label and a single NaN column label and no NaN values in the input data.

Input data

   row  col  val
0  NaN  0.0    0
1  0.0  1.0    1
2  1.0  2.0    2
3  2.0  3.0    3
4  3.0  NaN    4

Actual output

col  1.0  2.0  3.0
row               
0.0  1.0  NaN  NaN
1.0  NaN  2.0  NaN
2.0  NaN  NaN  3.0

Expected Behavior

The docs for dropna state:

Do not include columns whose entries are all NaN. If True, rows with a NaN value in any column will be omitted before computing margins.

Given that dropna=True by default, I'd expect all columns and rows to be present as each has at least one non-NaN value.

Expected output

col  0.0  1.0  2.0  3.0  NaN
row                         
NaN  0.0  NaN  NaN  NaN  NaN
0.0  NaN  1.0  NaN  NaN  NaN
1.0  NaN  NaN  2.0  NaN  NaN
2.0  NaN  NaN  NaN  3.0  NaN
3.0  NaN  NaN  NaN  NaN  4.0

Installed Versions

INSTALLED VERSIONS

commit : 3c93d06
python : 3.13.2
python-bits : 64
OS : Windows
OS-release : 11
Version : 10.0.22631
machine : AMD64
processor : AMD64 Family 25 Model 116 Stepping 1, AuthenticAMD
byteorder : little
LC_ALL : None
LANG : None
LOCALE : English_United States.1252
pandas : 3.0.0.dev0+2007.g3c93d06d64
numpy : 1.26.4
dateutil : 2.9.0.post0
pip : 25.0.1
Cython : 3.0.12
sphinx : 8.1.3
IPython : 9.0.2
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.3
blosc : None
bottleneck : 1.4.2
fastparquet : 2024.11.0
fsspec : 2025.3.0
html5lib : 1.1
hypothesis : 6.129.0
gcsfs : 2025.3.0
jinja2 : 3.1.6
lxml.etree : 5.3.1
matplotlib : 3.10.1
numba : 0.61.0
numexpr : 2.10.2
odfpy : None
openpyxl : 3.1.5
psycopg2 : 2.9.10
pymysql : 1.4.6
pyarrow : 19.0.1
pyreadstat : 1.2.8
pytest : 8.3.5
python-calamine : None
pytz : 2025.1
pyxlsb : 1.0.10
s3fs : 2025.3.0
scipy : 1.15.2
sqlalchemy : 2.0.39
tables : 3.10.2
tabulate : 0.9.0
xarray : 2024.9.0
xlrd : 2.0.1
xlsxwriter : 3.2.2
zstandard : 0.23.0
tzdata : 2025.1
qtpy : None
pyqt5 : None

Metadata

Metadata

Assignees

No one assigned

    Labels

    DocsMissing-datanp.nan, pd.NaT, pd.NA, dropna, isnull, interpolateReshapingConcat, Merge/Join, Stack/Unstack, Explode

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions