-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
data = {
"date": [
pd.Timestamp("2025-01-01"),
pd.Timestamp("2025-01-02"),
pd.Timestamp("2025-01-03"),
],
}
df = pd.DataFrame(data)
df.replace([pd.Timestamp("2025-01-01"), pd.Timestamp("2025-01-02")], np.nan)
Issue Description
When using DataFrame.replace()
to replace specific pd.Timestamp
values with np.nan, the resulting values become pd.NaT
instead of np.nan
. This behavior differs from pandas 1.1.5
, where the replaced values were np.nan
as expected.
Output
date
0 NaT
1 NaT
2 2025-01-03
Expected Behavior
date
0 NaN
1 NaN
2 2025-01-03
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.11.5
python-bits : 64
OS : Darwin
OS-release : 24.3.0
Version : Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:16 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.0.0
pytz : 2024.1
dateutil : 2.9.0.post0
pip : 23.2.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.4
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None