-
-
Notifications
You must be signed in to change notification settings - Fork 19.4k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
import pandas as pd
import numpy as np
data = {
"date": [
pd.Timestamp("2025-01-01"),
pd.Timestamp("2025-01-02"),
pd.Timestamp("2025-01-03"),
],
}
df = pd.DataFrame(data)
df.replace([pd.Timestamp("2025-01-01"), pd.Timestamp("2025-01-02")], np.nan)Issue Description
When using DataFrame.replace() to replace specific pd.Timestamp values with np.nan, the resulting values become pd.NaT instead of np.nan. This behavior differs from pandas 1.1.5, where the replaced values were np.nan as expected.
Output
date
0 NaT
1 NaT
2 2025-01-03
Expected Behavior
date
0 NaN
1 NaN
2 2025-01-03
Installed Versions
INSTALLED VERSIONS
commit : 0691c5c
python : 3.11.5
python-bits : 64
OS : Darwin
OS-release : 24.3.0
Version : Darwin Kernel Version 24.3.0: Thu Jan 2 20:24:16 PST 2025; root:xnu-11215.81.4~3/RELEASE_ARM64_T6000
machine : arm64
processor : arm
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.3
numpy : 2.0.0
pytz : 2024.1
dateutil : 2.9.0.post0
pip : 23.2.1
Cython : None
sphinx : None
IPython : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : None
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : None
hypothesis : None
gcsfs : None
jinja2 : 3.1.4
lxml.etree : None
matplotlib : None
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : None
pyreadstat : None
pytest : None
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : None
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None