-
-
Notifications
You must be signed in to change notification settings - Fork 19.1k
Description
Pandas version checks
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
for do_parq_roundtrip in [False, True]:
for do_fillna in [False, True]:
df = df_comparison.copy().reset_index(drop=True)
print("=" * 100)
parq_str = "with" if do_parq_roundtrip else "without"
fillna_str = "with" if do_fillna else "without"
print(f"{parq_str} parquet roundtrip, {fillna_str} fillna")
print("=" * 100)
# Do parquet roundtrip
if do_parq_roundtrip:
df.to_parquet("df.parquet", index=True)
df = pd.read_parquet("df.parquet")
print("Column datatypes:")
print(df.dtypes)
print()
# Detect mismatch
if do_fillna:
is_mismatch = df.col_a.fillna(2) != df.col_b.fillna(2)
else:
is_mismatch = df.col_a != df.col_b
print("Mismatch detected @:")
print(np.argwhere(is_mismatch.fillna(False)))
print()
df["is_mismatch"] = is_mismatch
# Print rows where there is a detected mismatch
print("Detected mismatch rows:")
print(df[df.is_mismatch])
print("=" * 100)
print()
Issue Description
I get inconsistent results when comparing two int64[pyarrow]
columns, depending on whether I use fillna
or first store the dataframe in parquet and read it again.
The input data is the result of merging two dataframes resulting from df = pd.read_sql(f"select * from some.Table", some_connection, dtype_backend="pyarrow")
. I've redacted the results by selecting only certain columns and renaming them. The dataframe contains two columns (col_a
and col_b
) that are compared. These columns are of dtype int64[pyarrow]
and contain either 0, 1, or NA. There is a third column ManualIndex
which I've added to make sure nothing cheeky is happening with the index, but which is probably useless.
I've attached a .parquet and .feather export of the data. But keep in mind storing and then re-loading the data apparently has an effect on the output of the comparison, so loading this data and running the script probably gives a different output then the one I've posted below.
The output of the script gives me the following results:
====================================================================================================
without parquet roundtrip, without fillna
====================================================================================================
Column datatypes:
ManualIndex int64
col_a int64[pyarrow]
col_b int64[pyarrow]
dtype: object
Mismatch detected @:
[[252518]
[252519]]
Detected mismatch rows:
ManualIndex col_a col_b is_mismatch
252518 252518 1 <NA> <NA>
252519 252519 1 <NA> <NA>
====================================================================================================
====================================================================================================
without parquet roundtrip, with fillna
====================================================================================================
Column datatypes:
ManualIndex int64
col_a int64[pyarrow]
col_b int64[pyarrow]
dtype: object
Mismatch detected @:
[[252512]
[252513]
[252518]
[252519]]
Detected mismatch rows:
ManualIndex col_a col_b is_mismatch
252512 252512 1 1 True
252513 252513 1 1 True
252518 252518 1 <NA> True
252519 252519 1 <NA> True
====================================================================================================
====================================================================================================
with parquet roundtrip, without fillna
====================================================================================================
Column datatypes:
ManualIndex int64
col_a int64[pyarrow]
col_b int64[pyarrow]
dtype: object
Mismatch detected @:
[]
Detected mismatch rows:
Empty DataFrame
Columns: [ManualIndex, col_a, col_b, is_mismatch]
Index: []
====================================================================================================
====================================================================================================
with parquet roundtrip, with fillna
====================================================================================================
Column datatypes:
ManualIndex int64
col_a int64[pyarrow]
col_b int64[pyarrow]
dtype: object
Mismatch detected @:
[[252505]
[252506]]
Detected mismatch rows:
ManualIndex col_a col_b is_mismatch
252505 252505 1 1 True
252506 252506 1 1 True
====================================================================================================
As you can see the results are different for each combination of settings.
Expected Behavior
My expectations:
- I expect the roundtrip to a parquet file and back to have no bearing on the comparison at all.
- I expect
is_mismatch
to beTrue
only atManualIndex
252518
and252519
when usingfillna(2)
before comparing. - I expect
is_mismatch
to beNA
atManualIndex
252518
and252519
when not usingfillna
before comparing. - I expect
is_mismatch
to beFalse
everywhere else. - I expect that when
is_mismatch
isNA
that it does not get found bynp.argwhere
or result in returned rows when using it to index into a dataframe.
I don't understand how the rows where col_a
and col_b
are both 1
can ever result in them not being equal according to the comparison. When I filter on these rows and do the comparison manually suddenly the comparison evalues to them being equal.
In short I am very confused, am I doing something wrong here?
Installed Versions
INSTALLED VERSIONS
commit : 4665c10
python : 3.13.4
python-bits : 64
OS : Windows
OS-release : 11
Version : 10.0.26100
machine : AMD64
processor : Intel64 Family 6 Model 106 Stepping 6, GenuineIntel
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : English_Netherlands.1252
pandas : 2.3.2
numpy : 2.2.6
pytz : 2025.2
dateutil : 2.9.0.post0
pip : None
Cython : None
sphinx : None
IPython : 9.2.0
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.13.4
blosc : None
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : None
html5lib : 1.1
hypothesis : None
gcsfs : None
jinja2 : 3.1.6
lxml.etree : 5.4.0
matplotlib : 3.10.3
numba : None
numexpr : None
odfpy : None
openpyxl : None
pandas_gbq : None
psycopg2 : None
pymysql : None
pyarrow : 21.0.0
pyreadstat : None
pytest : 8.3.5
python-calamine : None
pyxlsb : None
s3fs : None
scipy : None
sqlalchemy : 2.0.42
tables : None
tabulate : None
xarray : None
xlrd : None
xlsxwriter : None
zstandard : None
tzdata : 2025.2
qtpy : None
pyqt5 : None