diff --git a/pandas/core/generic.py b/pandas/core/generic.py index 6e893c46acfdb..5f8a8877a8297 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -11950,7 +11950,7 @@ def _doc_params(cls): True >>> pd.Series([True, False]).all() False ->>> pd.Series([], dtype="float64").all() +>>> pd.Series([], dtype='float64').all() True >>> pd.Series([np.nan]).all() True @@ -12319,7 +12319,7 @@ def _doc_params(cls): False >>> pd.Series([True, False]).any() True ->>> pd.Series([], dtype="float64").any() +>>> pd.Series([], dtype='float64').any() False >>> pd.Series([np.nan]).any() False @@ -12330,7 +12330,7 @@ def _doc_params(cls): Whether each column contains at least one True element (the default). ->>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) +>>> df = pd.DataFrame({'A': [1, 2], 'B': [0, 2], 'C': [0, 0]}) >>> df A B C 0 1 0 0 @@ -12344,7 +12344,7 @@ def _doc_params(cls): Aggregating over the columns. ->>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) +>>> df = pd.DataFrame({'A': [True, False], 'B': [1, 2]}) >>> df A B 0 True 1 @@ -12355,7 +12355,7 @@ def _doc_params(cls): 1 True dtype: bool ->>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) +>>> df = pd.DataFrame({'A': [True, False], 'B': [1, 0]}) >>> df A B 0 True 1