diff --git a/ci/code_checks.sh b/ci/code_checks.sh index b01866a6d6c82..80ce5b427bf6b 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -302,7 +302,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.api.types.is_float PR01,SA01" \ -i "pandas.api.types.is_float_dtype SA01" \ -i "pandas.api.types.is_hashable PR01,RT03,SA01" \ - -i "pandas.api.types.is_int64_dtype SA01" \ -i "pandas.api.types.is_integer PR01,SA01" \ -i "pandas.api.types.is_integer_dtype SA01" \ -i "pandas.api.types.is_interval_dtype SA01" \ diff --git a/pandas/core/dtypes/common.py b/pandas/core/dtypes/common.py index bee8af46baa64..fb4daf6bd4ff7 100644 --- a/pandas/core/dtypes/common.py +++ b/pandas/core/dtypes/common.py @@ -829,6 +829,13 @@ def is_int64_dtype(arr_or_dtype) -> bool: int)` will be True if the OS uses 64-bit integers and False if the OS uses 32-bit integers. + See Also + -------- + pandas.api.types.is_string_dtype : Check whether the provided array or dtype is of the string dtype. + pandas.api.types.is_float_dtype : Check whether the provided array or dtype is of a float dtype. + pandas.api.types.is_integer_dtype : Check whether the provided array or dtype is of an integer dtype. + pandas.api.types.is_numeric_dtype : Check whether the provided array or dtype is of a numeric dtype. + Examples -------- >>> from pandas.api.types import is_int64_dtype