diff --git a/ci/code_checks.sh b/ci/code_checks.sh index f2d9f582d8932..443753aa175fd 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -164,7 +164,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.core.groupby.SeriesGroupBy.plot PR02" \ -i "pandas.core.groupby.SeriesGroupBy.sem SA01" \ -i "pandas.core.resample.Resampler.__iter__ RT03,SA01" \ - -i "pandas.core.resample.Resampler.ffill RT03" \ -i "pandas.core.resample.Resampler.get_group RT03,SA01" \ -i "pandas.core.resample.Resampler.groups SA01" \ -i "pandas.core.resample.Resampler.indices SA01" \ diff --git a/pandas/core/resample.py b/pandas/core/resample.py index b621fcf9a6415..711396096a5e3 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -529,6 +529,11 @@ def ffill(self, limit: int | None = None): """ Forward fill the values. + This method fills missing values by propagating the last valid + observation forward, up to the next valid observation. It is commonly + used in time series analysis when resampling data to a higher frequency + (upsampling) and filling gaps in the resampled output. + Parameters ---------- limit : int, optional @@ -536,7 +541,8 @@ def ffill(self, limit: int | None = None): Returns ------- - An upsampled Series. + Series + The resampled data with missing values filled forward. See Also --------