diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index 35ec09892ede6..33ca593a6ebce 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -1321,8 +1321,8 @@ def idxmin(self, skipna: bool = True) -> Series: Returns ------- - Index - Label of the minimum value. + Series + Indexes of minima in each group. Raises ------ @@ -1374,8 +1374,8 @@ def idxmax(self, skipna: bool = True) -> Series: Returns ------- - Index - Label of the maximum value. + Series + Indexes of maxima in each group. Raises ------ @@ -2508,8 +2508,8 @@ def idxmax( Returns ------- - Series - Indexes of maxima in each group. + DataFrame + Indexes of maxima in each column according to the group. Raises ------ @@ -2519,6 +2519,7 @@ def idxmax( See Also -------- Series.idxmax : Return index of the maximum element. + DataFrame.idxmax : Indexes of maxima along the specified axis. Notes ----- @@ -2532,6 +2533,7 @@ def idxmax( ... { ... "consumption": [10.51, 103.11, 55.48], ... "co2_emissions": [37.2, 19.66, 1712], + ... "food_type": ["meat", "plant", "meat"], ... }, ... index=["Pork", "Wheat Products", "Beef"], ... ) @@ -2542,12 +2544,14 @@ def idxmax( Wheat Products 103.11 19.66 Beef 55.48 1712.00 - By default, it returns the index for the maximum value in each column. + By default, it returns the index for the maximum value in each column + according to the group. - >>> df.idxmax() - consumption Wheat Products - co2_emissions Beef - dtype: object + >>> df.groupby("food_type").idxmax() + consumption co2_emissions + food_type + animal Beef Beef + plant Wheat Products Wheat Products """ return self._idxmax_idxmin("idxmax", numeric_only=numeric_only, skipna=skipna) @@ -2570,8 +2574,8 @@ def idxmin( Returns ------- - Series - Indexes of minima in each group. + DataFrame + Indexes of minima in each column according to the group. Raises ------ @@ -2581,6 +2585,7 @@ def idxmin( See Also -------- Series.idxmin : Return index of the minimum element. + DataFrame.idxmin : Indexes of minima along the specified axis. Notes ----- @@ -2594,6 +2599,7 @@ def idxmin( ... { ... "consumption": [10.51, 103.11, 55.48], ... "co2_emissions": [37.2, 19.66, 1712], + ... "food_type": ["meat", "plant", "meat"], ... }, ... index=["Pork", "Wheat Products", "Beef"], ... ) @@ -2604,12 +2610,14 @@ def idxmin( Wheat Products 103.11 19.66 Beef 55.48 1712.00 - By default, it returns the index for the minimum value in each column. + By default, it returns the index for the minimum value in each column + according to the group. - >>> df.idxmin() - consumption Pork - co2_emissions Wheat Products - dtype: object + >>> df.groupby("food_type").idxmin() + consumption co2_emissions + food_type + animal Pork Pork + plant Wheat Products Wheat Products """ return self._idxmax_idxmin("idxmin", numeric_only=numeric_only, skipna=skipna)