diff --git a/pandas/arrays/__init__.py b/pandas/arrays/__init__.py index b5c1c98da1c78..7302e4acf85d4 100644 --- a/pandas/arrays/__init__.py +++ b/pandas/arrays/__init__.py @@ -4,6 +4,41 @@ See :ref:`extending.extension-types` for more. """ +# Explanations for the ExtensionArrays listed below: +# +# ArrowExtensionArray: Wraps an Apache Arrow array for high-performance data handling. +# +# ArrowStringArray: A specific version for string data backed by Apache Arrow. +# +# BooleanArray: Stores boolean data (True, False) but with the +# ability to hold missing values (NA). +# +# Categorical: For data that belongs to a fixed, finite set of +# categories. Very memory efficient. +# +# DatetimeArray: Handles timezone-aware or timezone-naive date and time data. +# +# FloatingArray: For floating-point (decimal) numbers, with support +# for missing values. +# +# IntegerArray: For integer (whole) numbers, with support for missing values. +# +# IntervalArray: Stores data representing intervals or ranges (e.g., 1-5, 6-10). +# +# NumpyExtensionArray: A wrapper around a standard NumPy array, for compatibility +# within the extension system. +# +# PeriodArray: For data representing regular time periods (e.g., months, +# quarters, years). +# +# SparseArray: Memory-efficient array for data that is mostly zero or NA. +# +# StringArray: Dedicated array for handling string data, with support +# for missing values. +# +# TimedeltaArray: For data representing durations or differences in time +# (e.g., 2 days, 5 hours). + from pandas.core.arrays import ( ArrowExtensionArray, ArrowStringArray,