|
288 | 288 | if (window.outIntercept) {
|
289 | 289 | lines = window.outIntercept.type === 'group' ? window.outIntercept.stream : window.outIntercept;
|
290 | 290 | } else {
|
291 |
| - lines = this.pdf.internal.pages[1]; |
| 291 | + lines = this.internal.getCurrentPage(); |
292 | 292 | }
|
293 | 293 | lines.push("q");
|
294 | 294 | var origPath = this.path;
|
|
326 | 326 | if (window.outIntercept) {
|
327 | 327 | lines = window.outIntercept.type === 'group' ? window.outIntercept.stream : window.outIntercept;
|
328 | 328 | } else {
|
329 |
| - lines = this.pdf.internal.pages[1]; |
| 329 | + lines = this.internal.getCurrentPage(); |
330 | 330 | }
|
331 | 331 | lines.push("q");
|
332 | 332 | var origPath = this.path;
|
|
831 | 831 | if (window.outIntercept) {
|
832 | 832 | lines = window.outIntercept.type === 'group' ? window.outIntercept.stream : window.outIntercept;
|
833 | 833 | } else {
|
834 |
| - lines = this.pdf.internal.pages[1]; |
| 834 | + lines = this.internal.getCurrentPage(); |
835 | 835 | }
|
836 | 836 | lines.push("q");
|
837 | 837 |
|
|
953 | 953 | if (window.outIntercept) {
|
954 | 954 | lines = window.outIntercept.type === 'group' ? window.outIntercept.stream : window.outIntercept;
|
955 | 955 | } else {
|
956 |
| - lines = this.pdf.internal.pages[1]; |
| 956 | + lines = this.internal.getCurrentPage(); |
957 | 957 | }
|
958 | 958 | lines.push("q");
|
959 | 959 |
|
|
982 | 982 | if (window.outIntercept) {
|
983 | 983 | lines = window.outIntercept.type === 'group' ? window.outIntercept.stream : window.outIntercept;
|
984 | 984 | } else {
|
985 |
| - lines = this.pdf.internal.pages[1]; |
| 985 | + lines = this.internal.getCurrentPage(); |
986 | 986 | }
|
987 | 987 |
|
988 | 988 | // if (this.ctx._clip_path.length > 0) {
|
|
1518 | 1518 | return curves;
|
1519 | 1519 | };
|
1520 | 1520 |
|
| 1521 | + c2d.internal.getCurrentPage = function () { |
| 1522 | + return this.pdf.internal.pages[this.pdf.internal.getCurrentPageInfo().pageNumber]; |
| 1523 | + }; |
| 1524 | + |
1521 | 1525 | /**
|
1522 | 1526 | * Cubic bezier approximation of a circular arc centered at the origin, from (radians) a1 to a2, where a2-a1 < pi/2. The arc's radius is r.
|
1523 | 1527 | *
|
|
0 commit comments