This repository was archived by the owner on Sep 2, 2022. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 716
linear regression for Squeeze Momentum Indicator #120
Copy link
Copy link
Open
Description
-
your code doesn't contain
linregcompared with the one found from trading-view, may I ask why? -
yours:
@classmethod
def SQZMI(cls, ohlc: DataFrame, period: int = 20, MA: Series = None) -> DataFrame:
"""
Squeeze Momentum Indicator
The Squeeze indicator attempts to identify periods of consolidation in a market.
In general the market is either in a period of quiet consolidation or vertical price discovery.
By identifying these calm periods, we have a better opportunity of getting into trades with the potential for larger moves.
Once a market enters into a “squeeze”, we watch the overall market momentum to help forecast the market direction and await a release of market energy.
:param pd.DataFrame ohlc: 'open, high, low, close' pandas DataFrame
:period: int - number of periods to take into consideration
:MA pd.Series: override internal calculation which uses SMA with moving average of your choice
:return pd.Series: indicator calcs as pandas Series
SQZMI['SQZ'] is bool True/False, if True squeeze is on. If false, squeeeze has fired.
"""
if not isinstance(MA, pd.core.series.Series):
ma = pd.Series(cls.SMA(ohlc, period))
else:
ma = None
bb = cls.BBANDS(ohlc, period=period, MA=ma)
kc = cls.KC(ohlc, period=period, kc_mult=1.5)
comb = pd.concat([bb, kc], axis=1)
def sqz_on(row):
if row["BB_LOWER"] > row["KC_LOWER"] and row["BB_UPPER"] < row["KC_UPPER"]:
return True
else:
return False
comb["SQZ"] = comb.apply(sqz_on, axis=1)
return pd.Series(comb["SQZ"], name="{0} period SQZMI".format(period))- trading-view:
//
// @author LazyBear
// List of all my indicators: https://www.tradingview.com/v/4IneGo8h/
//
study(shorttitle = "SQZMOM_LB", title="Squeeze Momentum Indicator [LazyBear]", overlay=false)
length = input(20, title="BB Length")
mult = input(2.0,title="BB MultFactor")
lengthKC=input(20, title="KC Length")
multKC = input(1.5, title="KC MultFactor")
useTrueRange = input(true, title="Use TrueRange (KC)", type=bool)
// Calculate BB
source = close
basis = sma(source, length)
dev = multKC * stdev(source, length)
upperBB = basis + dev
lowerBB = basis - dev
// Calculate KC
ma = sma(source, lengthKC)
range = useTrueRange ? tr : (high - low)
rangema = sma(range, lengthKC)
upperKC = ma + rangema * multKC
lowerKC = ma - rangema * multKC
sqzOn = (lowerBB > lowerKC) and (upperBB < upperKC)
sqzOff = (lowerBB < lowerKC) and (upperBB > upperKC)
noSqz = (sqzOn == false) and (sqzOff == false)
val = linreg(source - avg(avg(highest(high, lengthKC), lowest(low, lengthKC)),sma(close,lengthKC)),
lengthKC,0)
bcolor = iff( val > 0,
iff( val > nz(val[1]), lime, green),
iff( val < nz(val[1]), red, maroon))
scolor = noSqz ? blue : sqzOn ? black : gray
plot(val, color=bcolor, style=histogram, linewidth=4)
plot(0, color=scolor, style=cross, linewidth=2)Metadata
Metadata
Assignees
Labels
No labels