|
| 1 | +from colbert.infra import ColBERTConfig |
| 2 | +from colbert.modeling.checkpoint import Checkpoint |
| 3 | +from pgvector.psycopg import register_vector, Bit |
| 4 | +import psycopg |
| 5 | + |
| 6 | +conn = psycopg.connect(dbname='pgvector_example', autocommit=True) |
| 7 | + |
| 8 | +conn.execute('CREATE EXTENSION IF NOT EXISTS vector') |
| 9 | +register_vector(conn) |
| 10 | + |
| 11 | +conn.execute('DROP TABLE IF EXISTS documents') |
| 12 | +conn.execute('CREATE TABLE documents (id bigserial PRIMARY KEY, content text, embeddings bit(128)[])') |
| 13 | +conn.execute(""" |
| 14 | +CREATE OR REPLACE FUNCTION max_sim(document bit[], query bit[]) RETURNS double precision AS $$ |
| 15 | + WITH queries AS ( |
| 16 | + SELECT row_number() OVER () AS query_number, * FROM (SELECT unnest(query) AS query) |
| 17 | + ), |
| 18 | + documents AS ( |
| 19 | + SELECT unnest(document) AS document |
| 20 | + ), |
| 21 | + similarities AS ( |
| 22 | + SELECT query_number, 1 - ((document <~> query) / bit_length(query)) AS similarity FROM queries CROSS JOIN documents |
| 23 | + ), |
| 24 | + max_similarities AS ( |
| 25 | + SELECT MAX(similarity) AS max_similarity FROM similarities GROUP BY query_number |
| 26 | + ) |
| 27 | + SELECT SUM(max_similarity) FROM max_similarities |
| 28 | +$$ LANGUAGE SQL |
| 29 | +""") |
| 30 | + |
| 31 | + |
| 32 | +def binary_quantize(embeddings): |
| 33 | + return [Bit(e.numpy()) for e in (embeddings > 0)] |
| 34 | + |
| 35 | + |
| 36 | +config = ColBERTConfig(doc_maxlen=220, query_maxlen=32) |
| 37 | +checkpoint = Checkpoint('colbert-ir/colbertv2.0', colbert_config=config, verbose=0) |
| 38 | + |
| 39 | +input = [ |
| 40 | + 'The dog is barking', |
| 41 | + 'The cat is purring', |
| 42 | + 'The bear is growling' |
| 43 | +] |
| 44 | +doc_embeddings = checkpoint.docFromText(input, keep_dims=False) |
| 45 | +for content, embeddings in zip(input, doc_embeddings): |
| 46 | + embeddings = binary_quantize(embeddings) |
| 47 | + conn.execute('INSERT INTO documents (content, embeddings) VALUES (%s, %s)', (content, embeddings)) |
| 48 | + |
| 49 | +query = 'puppy' |
| 50 | +query_embeddings = binary_quantize(checkpoint.queryFromText([query])[0]) |
| 51 | +result = conn.execute('SELECT content, max_sim(embeddings, %s) AS max_sim FROM documents ORDER BY max_sim DESC LIMIT 5', (query_embeddings,)).fetchall() |
| 52 | +for row in result: |
| 53 | + print(row) |
0 commit comments