Skip to content

Commit af361f2

Browse files
committed
Show that multiplication, conjugation are isomorphisms of groups
1 parent 8e03a68 commit af361f2

File tree

1 file changed

+11
-3
lines changed

1 file changed

+11
-3
lines changed

GpdCont/Delooping/Properties.agda

Lines changed: 11 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -2,6 +2,7 @@
22

33
open import GpdCont.Prelude
44
open import Cubical.Algebra.Group.Base as AbsGroup renaming (GroupStr to AbsGroupStr ; Group to AbsGroup)
5+
open import Cubical.Algebra.Group.Properties using (module GroupTheory)
56
open import Cubical.Algebra.Group.Morphisms using (GroupHom ; IsGroupHom ; GroupEquiv)
67
open import Cubical.Algebra.Group.MorphismProperties using (isPropIsGroupHom ; makeIsGroupHom ; invGroupEquiv ; GroupEquiv→GroupHom)
78
open import Cubical.Algebra.Group.GroupPath using (uaGroup)
@@ -13,6 +14,7 @@ private
1314

1415
open import GpdCont.Groups.Base
1516
open import GpdCont.Delooping.Base G as Delooping using (𝔹)
17+
open import GpdCont.Groups.Solve using (solveGroup)
1618
open import GpdCont.Connectivity using (isPathConnected ; isPathConnected→merePath)
1719
open import GpdCont.Univalence using (ua→)
1820

@@ -95,13 +97,19 @@ private
9597
ua (conjugateEquiv $ g · h) ∎
9698
where
9799
shuffle : x inv h · (inv g · x · g) · h ≡ inv (g · h) · x · g · h
98-
shuffle = {! !}
100+
shuffle x =
101+
inv h · (inv g · x · g) · h ≡⟨ lemma₁ (inv h) (inv g) x g h ⟩
102+
(inv h · inv g) · x · g · h ≡⟨ cong (λ - - · x · g · h) (sym $ GroupTheory.invDistr G g h) ⟩
103+
inv (g · h) · x · g · h ∎
104+
where
105+
lemma₁ : (h⁻¹ g⁻¹ x g h : ⟨ G ⟩) h⁻¹ · (g⁻¹ · x · g) · h ≡ (h⁻¹ · g⁻¹) · x · g · h
106+
lemma₁ = solveGroup G
99107

100108
mulRightIso : (g : ⟨ G ⟩) Iso ⟨ G ⟩ ⟨ G ⟩
101109
mulRightIso g .Iso.fun = _· g
102110
mulRightIso g .Iso.inv = _· (inv g)
103-
mulRightIso g .Iso.rightInv = {! !}
104-
mulRightIso g .Iso.leftInv = {! !}
111+
mulRightIso g .Iso.rightInv h = sym (G.·Assoc h (inv g) g) ∙ cong (h ·_) (G.·InvL g) ∙ G.·IdR h
112+
mulRightIso g .Iso.leftInv h = sym (G.·Assoc h g (inv g)) ∙ cong (h ·_) (G.·InvR g) ∙ G.·IdR h
105113

106114
mulRightEquiv : (g : ⟨ G ⟩) ⟨ G ⟩ ≃ ⟨ G ⟩
107115
mulRightEquiv g = isoToEquiv $ mulRightIso g

0 commit comments

Comments
 (0)