@@ -12,6 +12,7 @@ open import GpdCont.Connectivity as Connectivity using (isPathConnected)
1212
1313open import GpdCont.TwoCategory.Base using (TwoCategory)
1414open import GpdCont.TwoCategory.LaxFunctor using (LaxFunctor ; compLaxFunctor)
15+ open import GpdCont.TwoCategory.StrictFunctor using (StrictFunctor)
1516open import GpdCont.TwoCategory.LocalFunctor using (LocalFunctor)
1617open import GpdCont.TwoCategory.Displayed.Base using (TwoCategoryᴰ)
1718open import GpdCont.TwoCategory.Displayed.LocallyThin using (LocallyThinOver ; IntoLocallyThin)
@@ -123,6 +124,26 @@ SetBundleΣFst .LaxFunctor.F-assoc (φ , f) (ψ , g) (ρ , h) = refl′ (refl
123124SetBundleΣFst .LaxFunctor.F-unit-left (J , x) = sym GL.compPathRefl
124125SetBundleΣFst .LaxFunctor.F-unit-right (J , x) = sym GL.compPathRefl
125126
127+ SetBundleΣFstˢ : StrictFunctor FamSetBundle (hGpdCat ℓ)
128+ SetBundleΣFstˢ .StrictFunctor.F-ob = ΣFst₀
129+ SetBundleΣFstˢ .StrictFunctor.F-hom = ΣFst₁
130+ SetBundleΣFstˢ .StrictFunctor.F-rel = ΣFst₂
131+ SetBundleΣFstˢ .StrictFunctor.F-rel-id = refl
132+ SetBundleΣFstˢ .StrictFunctor.F-rel-trans = ΣFst₂-rel-trans
133+ SetBundleΣFstˢ .StrictFunctor.F-hom-comp _ _ = refl
134+ SetBundleΣFstˢ .StrictFunctor.F-hom-id _ = refl
135+ SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-left _ _ _ .fst = refl
136+ SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-left _ _ _ .snd = refl
137+ SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-right _ _ _ .fst = refl
138+ SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-right _ _ _ .snd = refl
139+ SetBundleΣFstˢ .StrictFunctor.F-assoc _ _ _ = reflSquare _
140+ SetBundleΣFstˢ .StrictFunctor.F-unit-left-filler _ .fst = refl
141+ SetBundleΣFstˢ .StrictFunctor.F-unit-left-filler _ .snd = refl
142+ SetBundleΣFstˢ .StrictFunctor.F-unit-left f = reflSquare (ΣFst₁ f)
143+ SetBundleΣFstˢ .StrictFunctor.F-unit-right-filler _ .fst = refl
144+ SetBundleΣFstˢ .StrictFunctor.F-unit-right-filler _ .snd = refl
145+ SetBundleΣFstˢ .StrictFunctor.F-unit-right f = reflSquare (ΣFst₁ f)
146+
126147private
127148 ΣSnd₀ : (x : FamSetBundle.ob) → SetBundle.ob[ ΣFst₀ x ]
128149 ΣSnd₀ (_ , X) (j , b) = SetBundle.Fiber (X j) b
0 commit comments