Skip to content

Commit be4388f

Browse files
committed
Summation of bases of set bundles is a strict 2-functor
1 parent 4e87e9d commit be4388f

File tree

1 file changed

+21
-0
lines changed

1 file changed

+21
-0
lines changed

GpdCont/SetBundle/Summation.agda

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@ open import GpdCont.Connectivity as Connectivity using (isPathConnected)
1212

1313
open import GpdCont.TwoCategory.Base using (TwoCategory)
1414
open import GpdCont.TwoCategory.LaxFunctor using (LaxFunctor ; compLaxFunctor)
15+
open import GpdCont.TwoCategory.StrictFunctor using (StrictFunctor)
1516
open import GpdCont.TwoCategory.LocalFunctor using (LocalFunctor)
1617
open import GpdCont.TwoCategory.Displayed.Base using (TwoCategoryᴰ)
1718
open import GpdCont.TwoCategory.Displayed.LocallyThin using (LocallyThinOver ; IntoLocallyThin)
@@ -123,6 +124,26 @@ SetBundleΣFst .LaxFunctor.F-assoc (φ , f) (ψ , g) (ρ , h) = refl′ (refl
123124
SetBundleΣFst .LaxFunctor.F-unit-left (J , x) = sym GL.compPathRefl
124125
SetBundleΣFst .LaxFunctor.F-unit-right (J , x) = sym GL.compPathRefl
125126

127+
SetBundleΣFstˢ : StrictFunctor FamSetBundle (hGpdCat ℓ)
128+
SetBundleΣFstˢ .StrictFunctor.F-ob = ΣFst₀
129+
SetBundleΣFstˢ .StrictFunctor.F-hom = ΣFst₁
130+
SetBundleΣFstˢ .StrictFunctor.F-rel = ΣFst₂
131+
SetBundleΣFstˢ .StrictFunctor.F-rel-id = refl
132+
SetBundleΣFstˢ .StrictFunctor.F-rel-trans = ΣFst₂-rel-trans
133+
SetBundleΣFstˢ .StrictFunctor.F-hom-comp _ _ = refl
134+
SetBundleΣFstˢ .StrictFunctor.F-hom-id _ = refl
135+
SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-left _ _ _ .fst = refl
136+
SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-left _ _ _ .snd = refl
137+
SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-right _ _ _ .fst = refl
138+
SetBundleΣFstˢ .StrictFunctor.F-assoc-filler-right _ _ _ .snd = refl
139+
SetBundleΣFstˢ .StrictFunctor.F-assoc _ _ _ = reflSquare _
140+
SetBundleΣFstˢ .StrictFunctor.F-unit-left-filler _ .fst = refl
141+
SetBundleΣFstˢ .StrictFunctor.F-unit-left-filler _ .snd = refl
142+
SetBundleΣFstˢ .StrictFunctor.F-unit-left f = reflSquare (ΣFst₁ f)
143+
SetBundleΣFstˢ .StrictFunctor.F-unit-right-filler _ .fst = refl
144+
SetBundleΣFstˢ .StrictFunctor.F-unit-right-filler _ .snd = refl
145+
SetBundleΣFstˢ .StrictFunctor.F-unit-right f = reflSquare (ΣFst₁ f)
146+
126147
private
127148
ΣSnd₀ : (x : FamSetBundle.ob) SetBundle.ob[ ΣFst₀ x ]
128149
ΣSnd₀ (_ , X) (j , b) = SetBundle.Fiber (X j) b

0 commit comments

Comments
 (0)